高级检索
当前位置: 首页 > 详情页

Structure and activation mechanism of the hexameric plasma membrane H+-ATPase

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ 自然指数

机构: [1]Peking Univ, Sch Basic Med Sci, Dept Biochem & Biophys, Beijing, Peoples R China [2]Van Andel Inst, Dept Struct Biol, Grand Rapids, MI 49503 USA
出处:

关键词: TRANSPORT PHOSPHORYLATION DOMAIN MICRODOMAINS SEGREGATION PATCHWORK PROTEINS GLUCOSE SODIUM GROWTH

摘要:
The plasma membrane H+ -ATPase is responsible for maintenance of the plasma membrane potential, which provides energy for the transport of nutrients, and the plasma membrane H+ -ATPase in S. cerevisiae (Pma1) is a P3A-type ATPase that assembles and functions as a hexamer. Here, the authors present the cryo-EM structures of autoinhibited and activated native Pma1 hexamers purified with endogenous lipids and they propose a mechanism for proton pumping across the membrane by this family of H+ -ATPases. The S. cerevisiae plasma membrane H+-ATPase, Pma1, is a P3A-type ATPase and the primary protein component of the membrane compartment of Pma1 (MCP). Like other plasma membrane H+-ATPases, Pma1 assembles and functions as a hexamer, a property unique to this subfamily among the larger family of P-type ATPases. It has been unclear how Pma1 organizes the yeast membrane into MCP microdomains, or why it is that Pma1 needs to assemble into a hexamer to establish the membrane electrochemical proton gradient. Here we report a high-resolution cryo-EM study of native Pma1 hexamers embedded in endogenous lipids. Remarkably, we found that the Pma1 hexamer encircles a liquid-crystalline membrane domain composed of 57 ordered lipid molecules. The Pma1-encircled lipid patch structure likely serves as the building block of the MCP. At pH 7.4, the carboxyl-terminal regulatory alpha-helix binds to the phosphorylation domains of two neighboring Pma1 subunits, locking the hexamer in the autoinhibited state. The regulatory helix becomes disordered at lower pH, leading to activation of the Pma1 hexamer. The activation process is accompanied by a 6.7 angstrom downward shift and a 40 degrees rotation of transmembrane helices 1 and 2 that line the proton translocation path. The conformational changes have enabled us to propose a detailed mechanism for ATP-hydrolysis-driven proton pumping across the plasma membrane. Our structures will facilitate the development of antifungal drugs that target this essential protein.

基金编号: 32171212

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 1 区 综合性期刊
小类 | 1 区 综合性期刊
最新[2023]版:
大类 | 1 区 综合性期刊
小类 | 1 区 综合性期刊
JCR分区:
出版当年[2019]版:
Q1 MULTIDISCIPLINARY SCIENCES
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Peking Univ, Sch Basic Med Sci, Dept Biochem & Biophys, Beijing, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Peking Univ, Sch Basic Med Sci, Dept Biochem & Biophys, Beijing, Peoples R China [2]Van Andel Inst, Dept Struct Biol, Grand Rapids, MI 49503 USA [*1]Peking Univ, Sch Basic Med Sci, Dept Biochem & Biophys, Beijing, Peoples R China [*2]Van Andel Inst, Dept Struct Biol, Grand Rapids, MI 49503 USA
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)