高级检索
当前位置: 首页 > 详情页

CITGeneDB: a comprehensive database of human and mouse genes enhancing or suppressing cold-induced thermogenesis validated by perturbation experiments in mice

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA [2]Texas A&M Univ, TEES AgriLife Ctr Bioinformat & Genom Syst Engn, College Stn, TX 77843 USA [3]Shanghai Jiao Tong Univ,Shanghai Key Clin Ctr Metab Dis,Affiliated Peoples Hosp 6,Dept Endocrinol & Metab,Shanghai Key Lab Diabet,Shanghai Inst Diabet,Shan,Shanghai 200233,Peoples R China
出处:
ISSN:

关键词: BROWN ADIPOSE-TISSUE FATTY-ACIDS OXIDATION

摘要:
Cold-induced thermogenesis increases energy expenditure and can reduce body weight in mammals, so the genes involved in it are thought to be potential therapeutic targets for treating obesity and diabetes. In the quest for more effective therapies, a great deal of research has been conducted to elucidate the regulatory mechanism of cold-induced thermogenesis. Over the last decade, a large number of genes that can enhance or suppress cold-induced thermogenesis have been discovered, but a comprehensive list of these genes is lacking. To fill this gap, we examined all of the annotated human and mouse genes and curated those demonstrated to enhance or suppress cold-induced thermogenesis by in vivo or ex vivo experiments in mice. The results of this highly accurate and comprehensive annotation are hosted on a database called CITGeneDB, which includes a searchable web interface to facilitate broad public use. The database will be updated as new genes are found to enhance or suppress cold-induced thermogenesis. It is expected that CITGeneDB will be a valuable resource in future explorations of the molecular mechanism of cold-induced thermogenesis, helping pave the way for new obesity and diabetes treatments.

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2017]版:
大类 | 3 区 生物
小类 | 2 区 数学与计算生物学
最新[2023]版:
大类 | 4 区 生物学
小类 | 4 区 数学与计算生物学
JCR分区:
出版当年[2016]版:
Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
最新[2023]版:
Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2016版] 出版当年五年平均 出版前一年[2015版] 出版后一年[2017版]

第一作者:
第一作者机构: [1]Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA [2]Texas A&M Univ, TEES AgriLife Ctr Bioinformat & Genom Syst Engn, College Stn, TX 77843 USA
通讯作者:
通讯机构: [1]Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA [*1]Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA [2]Texas A&M Univ, TEES AgriLife Ctr Bioinformat & Genom Syst Engn, College Stn, TX 77843 USA [*2]Texas A&M Univ, TEES AgriLife Ctr Bioinformat & Genom Syst Engn, College Stn, TX 77843 USA
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)