高级检索
当前位置: 首页 > 详情页

Automatic retinoblastoma screening and surveillance using deep learning

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China [2]Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China [3]School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China [4]Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
出处:
ISSN:

摘要:
Retinoblastoma is the most common intraocular malignancy in childhood. With the advanced management strategy, the globe salvage and overall survival have significantly improved, which proposes subsequent challenges regarding long-term surveillance and offspring screening. This study aimed to apply a deep learning algorithm to reduce the burden of follow-up and offspring screening.This cohort study includes retinoblastoma patients who visited Beijing Tongren Hospital from March 2018 to January 2022 for deep learning algorism development. Clinical-suspected and treated retinoblastoma patients from February 2022 to June 2022 were prospectively collected for prospective validation. Images from the posterior pole and peripheral retina were collected, and reference standards were made according to the consensus of the multidisciplinary management team. A deep learning algorithm was trained to identify "normal fundus", "stable retinoblastoma" in which specific treatment is not required, and "active retinoblastoma" in which specific treatment is required. The performance of each classifier included sensitivity, specificity, accuracy, and cost-utility.A total of 36,623 images were included for developing the Deep Learning Assistant for Retinoblastoma Monitoring (DLA-RB) algorithm. In internal fivefold cross-validation, DLA-RB achieved an area under curve (AUC) of 0.998 (95% confidence interval [CI] 0.986-1.000) in distinguishing normal fundus and active retinoblastoma, and 0.940 (95% CI 0.851-0.996) in distinguishing stable and active retinoblastoma. From February 2022 to June 2022, 139 eyes of 103 patients were prospectively collected. In identifying active retinoblastoma tumours from all clinical-suspected patients and active retinoblastoma from all treated retinoblastoma patients, the AUC of DLA-RB reached 0.991 (95% CI 0.970-1.000), and 0.962 (95% CI 0.915-1.000), respectively. The combination between ophthalmologists and DLA-RB significantly improved the accuracy of competent ophthalmologists and residents regarding both binary tasks. Cost-utility analysis revealed DLA-RB-based diagnosis mode is cost-effective in both retinoblastoma diagnosis and active retinoblastoma identification.DLA-RB achieved high accuracy and sensitivity in identifying active retinoblastoma from the normal and stable retinoblastoma fundus. It can be used to surveil the activity of retinoblastoma during follow-up and screen high-risk offspring. Compared with referral procedures to ophthalmologic centres, DLA-RB-based screening and surveillance is cost-effective and can be incorporated within telemedicine programs.This study was registered on ClinicalTrials.gov (NCT05308043).© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 医学
小类 | 2 区 肿瘤学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 肿瘤学
JCR分区:
出版当年[2021]版:
Q1 ONCOLOGY
最新[2024]版:
Q1 ONCOLOGY

影响因子: 最新[2024版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:29117 今日访问量:0 总访问量:1619 更新日期:2025-10-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)