高级检索
当前位置: 首页 > 详情页

Fundus photograph-based cataract evaluation network using deep learning

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst, Shenzhen Int Grad Sch, Shenzhen, Peoples R China [2]Capital Med Univ, Beijing Key Lab Intraocular Tumor Diag & Treatment, Beijing Tongren Eye Ctr,Beijing Ophthalmol & Visua, Beijing Tongren Hosp,Med Artificial Intelligence R, Beijing, Peoples R China [3]Tsinghua Univ, Tsinghua Int Grad Sch, Shenzhen, Peoples R China
出处:
ISSN:

关键词: artifcial intelligence cataract cataract screening fundus image cortical cataract nuclear cataract posterior subcapsular cataract

摘要:
Background: Our study aims to develop an artificial intelligence-based high-precision cataract classification and grading evaluation network using fundus images.Methods: We utilized 1,340 color fundus photographs from 875 participants (aged 50-91 years at image capture) from the Beijing Eye Study 2011. Four experienced and trained ophthalmologists performed the classification of these cases based on slit-lamp and retro-illuminated images. Cataracts were classified into three types based on the location of the lens opacity: cortical cataract, nuclear cataract, and posterior subcapsular cataract. We developed a Dual-Stream Cataract Evaluation Network (DCEN) that uses color photographs of cataract fundus to achieve simultaneous cataract type classification and severity grading. The accuracy of severity grading was enhanced by incorporating the results of type classification.Results: The DCEN method achieved an accuracy of 0.9762, a sensitivity of 0.9820, an F1 score of 0.9401, and a kappa coefficient of 0.8618 in the cataract classification task. By incorporating type features, the grading of cataract severity can be improved with an accuracy of 0.9703, a sensitivity of 0.9344, an F1 score of 0.9555, and a kappa coefficient of 0.9111. We utilized Grad-CAM visualization technology to analyze and summarize the fundus image features of different types of cataracts, and we verified our conclusions by examining the information entropy of the retinal vascular region.Conclusion: The proposed DCEN provides a reliable ability to comprehensively evaluate the condition of cataracts from fundus images. Applying deep learning to clinical cataract assessment has the advantages of simplicity, speed, and efficiency.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 3 区 物理与天体物理
小类 | 3 区 物理:综合
最新[2025]版:
大类 | 4 区 物理与天体物理
小类 | 4 区 物理:综合
JCR分区:
出版当年[2022]版:
Q2 PHYSICS, MULTIDISCIPLINARY
最新[2024]版:
Q2 PHYSICS, MULTIDISCIPLINARY

影响因子: 最新[2024版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst, Shenzhen Int Grad Sch, Shenzhen, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:28508 今日访问量:5 总访问量:1589 更新日期:2025-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)