高级检索
当前位置: 首页 > 详情页

Prediction of pathological complete response in locally advanced head and neck squamous cell carcinoma treated with neoadjuvant chemo-immunotherapy using volumetric multisequence MRI histogram analysis

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Capital Med Univ, Beijing Tongren Hosp, Dept Radiol, 1 Dongjiaominxiang St, Beijing 100730, Peoples R China [2]Capital Med Univ, Beijing Tongren Hosp, Canc Ctr, 1 Dongjiaominxiang St, Beijing 100730, Peoples R China [3]Capital Med Univ, Beijing Tongren Hosp, Dept Otolaryngol Head & Neck Surg, 1 Dongjiaominxiang St, Beijing 100730, Peoples R China
出处:
ISSN:

关键词: Neoadjuvant chemo-immunotherapy Head and neck squamous cell carcinoma MRI histogram analysis Treatment response

摘要:
PurposeThis study aimed to develop a multisequence MRI-based volumetric histogram metrics model for predicting pathological complete response (pCR) in advanced head and neck squamous cell carcinoma (HNSCC) patients undergoing neoadjuvant chemo-immunotherapy (NCIT) and compare its predictive performance with AJCC staging and RECIST 1.1 criteria.MethodsTwenty-four patients with locally advanced HNSCC from a prospective phase II trial were enrolled for analysis. All patients underwent pre- and post-NCIT MRI examinations from which whole-tumor histogram features were extracted, including T1WI, T2WI, enhanced T1WI (T1Gd), diffusion-weighted imaging (DWI) sequences, and their corresponding apparent diffusion coefficient (ADC) maps. The pathological results divided the patients into pathological complete response (pCR) and non-pCR (N-pCR) groups. Delta features were calculated as the percentage change in histogram features from pre- to post-treatment. After data reduction and feature selection, logistic regression was used to build prediction models. ROC analysis was performed to assess the diagnostic performance.ResultsEleven of 24 patients achieved pCR. Pre_T2_original_firstorder_Minimum, Post_ADC_original_firstorder_MeanAbsoluteDeviation, and Delta_T1Gd_original_firstorder_Skewness were associated with achieving pCR after NCIT. The Combined_Model demonstrated the best predictive performance (AUC 0.95), outperforming AJCC staging (AUC 0.52) and RECIST 1.1 (AUC 0.72). The Pre_Model (AUC 0.83) or Post-Model (AUC 0.83) had a better predictive ability than AJCC staging.ConclusionMultisequence MRI-based volumetric histogram analysis can non-invasively predict the pCR status of HNSCC patients undergoing NCIT. The use of histogram features extracted from pre- and post-treatment MRI exhibits promising predictive performance and offers a novel quantitative assessment method for evaluating pCR in HNSCC patients receiving NCIT.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 3 区 医学
小类 | 3 区 临床神经病学 3 区 神经成像 3 区 核医学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 神经成像 3 区 核医学 4 区 临床神经病学
JCR分区:
出版当年[2022]版:
Q3 CLINICAL NEUROLOGY Q3 NEUROIMAGING Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2024]版:
Q2 CLINICAL NEUROLOGY Q2 NEUROIMAGING Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2024版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Capital Med Univ, Beijing Tongren Hosp, Dept Radiol, 1 Dongjiaominxiang St, Beijing 100730, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:28508 今日访问量:0 总访问量:1584 更新日期:2025-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)