高级检索
当前位置: 首页 > 详情页

Attention mechanism-based multi-parametric MRI ensemble model for predicting tumor budding grade in rectal cancer patients

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Capital Med Univ, Beijing Friendship Hosp, Dept Radiol, Beijing, Peoples R China [2]Capital Med Univ, Bejing Tongren Hosp, Dept Radiol, Beijing, Peoples R China [3]Nanjing Med Univ, Affiliated Huaian Peoples Hosp 1, Dept Med Imaging Ctr, Huaian, Peoples R China [4]Xuzhou Med Univ, Huaian Hosp Affiliated, Dept Med Imaging, Huaian, Peoples R China
出处:
ISSN:

关键词: Magnetic resonance imaging Deep learning Transformer Rectal cancer Tumor budding

摘要:
Purpose To develop and validate a deep learning-based feature ensemble model using multiparametric magnetic resonance imaging (MRI) for predicting tumor budding (TB) grading in patients with rectal cancer (RC). Methods A retrospective cohort of 458 patients with pathologically confirmed rectal cancer (RC) from three institutions was included. Among them, 355 patients from Center 1 were divided into two groups at a 7:3 ratio: the training cohort (n = 248) and the internal validation cohort (n = 107). An additional 103 patients from two other centers served as the external validation cohort. Deep learning models were constructed for T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) based on the CrossFormer architecture, and deep learning features were extracted. Subsequently, a feature ensemble module based on the attention mechanism of Transformer was used to capture spatial interactions between different imaging sequences, creating a multiparametric ensemble model. The predictive performance of each model was evaluated using the area under the curve (AUC), calibration curves, and decision curve analysis (DCA). Results The deep learning model based on T2WI achieved AUC values of 0.789 (95% CI: 0.680-0.900) and 0.720 (95% CI: 0.591-0.849) in the internal and external validation cohorts, respectively. The deep learning model based on DWI had AUC values of 0.806 (95% CI: 0.705-0.908) and 0.772 (95% CI: 0.657-0.887) in the internal and external validation cohorts, respectively. The multiparametric ensemble model demonstrated superior performance, with AUC values of 0.868 (95% CI: 0.775-0.960) in the internal validation cohort and 0.839 (95% CI: 0.743-0.935) in the external validation cohort. DeLong test showed that the differences in AUC values among the models were not statistically significant in both the internal and external test sets (P > 0.05). The DCA curve demonstrated that within the 10-80% threshold range, the fusion model provided significantly higher clinical net benefit compared to other models. Conclusion Compared to single-sequence deep learning models, the attention mechanism-based multiparametric MRI fusion model enables more effective individualized prediction of TB grading in RC patients. It offers valuable guidance for treatment selection and prognostic evaluation while providing imaging-based support for personalized postoperative follow-up adjustments.

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 3 区 医学
小类 | 4 区 核医学
最新[2025]版:
大类 | 3 区 医学
小类 | 4 区 核医学
JCR分区:
出版当年[2023]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2024]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2024版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版] 出版后一年[2024版]

第一作者:
第一作者机构: [1]Capital Med Univ, Beijing Friendship Hosp, Dept Radiol, Beijing, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:28514 今日访问量:5 总访问量:1589 更新日期:2025-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)