高级检索
当前位置: 首页 > 详情页

Identification of diagnostic biomarkers for fibromyalgia using gene expression analysis and machine learning

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Shanghai Univ Tradit Chinese Med, Guanghua Hosp Affiliated, Dept Rheumatol, Shanghai, Peoples R China [2]Shanghai Univ Tradit Chinese Med, Guanghua Clin Med Coll, Shanghai, Peoples R China [3]Shanghai Acad Tradit Chinese Med, Inst Arthrit Res Integrat Med, Shanghai, Peoples R China [4]China Acad Chinese Med Sci, Guanganmen Hosp, Rheumatol Dept, Beijing, Peoples R China [5]Shanghai Jiao Tong Univ, Tongren Hosp, Sch Med, Shanghai, Peoples R China
出处:
ISSN:

关键词: fibromyalgia diagnostic markers DYRK3 RGS17 ArhGEF37

摘要:
Objective Fibromyalgia (FM) is a complex autoimmune disorder characterized by widespread pain and fatigue, with significant diagnostic challenges due to the absence of specific biomarkers. This study aims to identify and validate potential genetic markers for FM to facilitate earlier diagnosis and intervention.Methods We analyzed gene expression data from the Gene Expression Omnibus (GEO) to identify differentially expressed genes (DEGs) associated with FM. Comprehensive enrichment analyses, including Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathways, were performed to elucidate the biological functions and disease associations of the candidate genes. We used the eXtreme Gradient Boosting (XGBoost) algorithm to develop a diagnostic model, which was validated using independent datasets.Results Three genes, namely, dual-specificity tyrosine phosphorylation-regulated kinase 3 (DYRK3), regulator of G protein signaling 17 (RGS17), and Rho guanine nucleotide exchange factor 37 (ARHGEF37), were identified as key biomarkers for FM. These genes are implicated in critical processes such as ion homeostasis, cell signaling, and neurobiological functions, which are perturbed in FM. The diagnostic model demonstrated robust performance, with an area under the curve (AUC) of 0.8338 in the training set and 0.8178 in the validation set, indicating its potential utility in clinical settings.Conclusion The study successfully identifies three diagnostic biomarkers for FM, supported by both bioinformatics analysis and machine learning models. These findings could significantly improve diagnostic accuracy for FM, leading to better patient management and treatment outcomes.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 3 区 生物学
小类 | 3 区 遗传学
最新[2025]版:
大类 | 3 区 生物学
小类 | 3 区 遗传学
JCR分区:
出版当年[2023]版:
Q2 GENETICS & HEREDITY
最新[2024]版:
Q2 GENETICS & HEREDITY

影响因子: 最新[2024版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版] 出版后一年[2024版]

第一作者:
第一作者机构: [1]Shanghai Univ Tradit Chinese Med, Guanghua Hosp Affiliated, Dept Rheumatol, Shanghai, Peoples R China [2]Shanghai Univ Tradit Chinese Med, Guanghua Clin Med Coll, Shanghai, Peoples R China [3]Shanghai Acad Tradit Chinese Med, Inst Arthrit Res Integrat Med, Shanghai, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Shanghai Univ Tradit Chinese Med, Guanghua Hosp Affiliated, Dept Rheumatol, Shanghai, Peoples R China [3]Shanghai Acad Tradit Chinese Med, Inst Arthrit Res Integrat Med, Shanghai, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:28994 今日访问量:0 总访问量:1619 更新日期:2025-10-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)