高级检索
当前位置: 首页 > 详情页

Big data-driven machine learning: transforming multi-omics lung cancer research

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Shanghai Jiao Tong Univ, Tongren Hosp, Sch Med, Dept Gen Practice, Shanghai 200336, Peoples R China [2]Nanjing Med Univ, Affiliated Hosp 1, Dept Thorac Surg, Nanjing 211166, Peoples R China
出处:
ISSN:

关键词: Lung cancer Machine learning Multi-omics Diagnosis Treatment Prognosis

摘要:
BackgroundLung cancer remains a major global health threat, with its biological complexity and patient heterogeneity posing significant challenges. Novel machine learning approaches now offer effective tools to interpret complex biological information hierarchies, showing promise to transform lung cancer treatment approaches.MethodsWe analyzed comprehensive biological datasets from TCGA and other databases, integrating DNA, RNA, miRNA, protein, and metabolite information. Multiple machine learning methods were employed to build diagnostic tools, treatment response predictors, and survival estimation models.ResultsOur machine learning approaches effectively distinguished cancer patients from healthy controls. Analysis identified unique molecular characteristics between lung cancer subtypes and discovered biomarkers that help predict treatment efficacy and patient prognosis. Adding clinical data to biological information significantly improved model accuracy and enhanced patient stratification.ConclusionThis study marks significant progress toward precision cancer therapy by demonstrating how machine learning can help decode the complex biology of lung cancer.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 4 区 医学
小类 | 4 区 内分泌学与代谢 4 区 肿瘤学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 内分泌学与代谢 4 区 肿瘤学
JCR分区:
出版当年[2023]版:
Q2 ONCOLOGY Q3 ENDOCRINOLOGY & METABOLISM
最新[2024]版:
Q2 ONCOLOGY Q3 ENDOCRINOLOGY & METABOLISM

影响因子: 最新[2024版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版] 出版后一年[2024版]

第一作者:
第一作者机构: [1]Shanghai Jiao Tong Univ, Tongren Hosp, Sch Med, Dept Gen Practice, Shanghai 200336, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:28494 今日访问量:0 总访问量:1584 更新日期:2025-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)