高级检索
当前位置: 首页 > 详情页

Screening cognitive impairment in patients with atrial fibrillation: A deep learning model based on retinal fundus photographs

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ ESCI

机构: [1]Capital Med Univ, Beijing Anzhen Hosp, Dept Cardiol, 2 Anzhen Rd, Beijing 100029, Peoples R China [2]Capital Med Univ, Engn Res Ctr Med Devices Cardiovasc Dis, Minist Educ, Beijing, Peoples R China [3]Natl Clin Res Ctr Cardiovasc Dis, Beijing, Peoples R China [4]Beijing Airdoc Technol Co Ltd, Beijing, Peoples R China [5]Monash Univ, Fac Engn, Dept Elect & Comp Syst Engn, Clayton, Vic, Australia [6]Yale Sch Med, New Haven, CT USA [7]Peking Union Med Coll & Chinese Acad Med Sci, Sch Clin Med, Beijing, Peoples R China [8]Capital Med Univ, Beijing Tongren Hosp, Beijing Tongren Eye Ctr, Beijing Key Lab Intraocular Tumor Diag & Treatment, Beijing 100730, Peoples R China [9]Monash Univ, Monash eRes Ctr, Clayton, Australia
出处:
ISSN:

关键词: Cognitive impairment Atrial fibrillation Artificial intelligence Fundus photography Deep learning

摘要:
BACKGROUND Patients with atrial fibrillation (AF) have a higher risk of cognitive impairment (CI). However, complexity of CI diagnosis and lack of simple screening approaches limited early screening and intervention of CI in AF patients. OBJECTIVE Our study aimed to develop deep learning models based on fundus photographs for easy screening of CI in AF patients. METHODS From May 2021 to April 2023, patients who completed fundus examination and cognitive function evaluation in the Chinese Atrial Fibrillation Registry Study were included. The training and validation sets were randomly split at an 8:2 ratio. Participants from the Beijing Eye Study served as the external validation set. Different deep learning models were trained, and their CI detection ability was validated. RESULTS A total of 899 patients in the Chinese Atrial Fibrillation Registry Study were included. In the validation set, the vision-ensemble model based on fundus images alone had an area under the receiver-operating characteristic curve (AUROC) of 0.855 (95% confidence interval 0.816-0.894) for CI screening. The multimodal model (AUROC 0.861, 95% confidence interval 0.823-0.898), based on fundus photographs and 4 clinical variables, performed comparably to the vision-ensemble model. The AUROC of the vision-ensemble model for CI screening achieved 0.773 (95% confidence interval 0.709-0.837) in the external test set. In the saliency map, the vision-ensemble model focused on areas around retinal vessels and the optic disc. CONCLUSION A vision-ensemble model based on fundus images might be practical for preliminary screening of CI in AF patients.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 3 区 医学
小类 | 3 区 心脏和心血管系统
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 心脏和心血管系统
JCR分区:
出版当年[2023]版:
Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
最新[2024]版:
Q2 CARDIAC & CARDIOVASCULAR SYSTEMS

影响因子: 最新[2024版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版] 出版后一年[2024版]

第一作者:
第一作者机构: [1]Capital Med Univ, Beijing Anzhen Hosp, Dept Cardiol, 2 Anzhen Rd, Beijing 100029, Peoples R China [2]Capital Med Univ, Engn Res Ctr Med Devices Cardiovasc Dis, Minist Educ, Beijing, Peoples R China [3]Natl Clin Res Ctr Cardiovasc Dis, Beijing, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Capital Med Univ, Beijing Anzhen Hosp, Dept Cardiol, 2 Anzhen Rd, Beijing 100029, Peoples R China [2]Capital Med Univ, Engn Res Ctr Med Devices Cardiovasc Dis, Minist Educ, Beijing, Peoples R China [3]Natl Clin Res Ctr Cardiovasc Dis, Beijing, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:28517 今日访问量:0 总访问量:1589 更新日期:2025-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)