高级检索
当前位置: 首页 > 详情页

Comparison of Deep Learning Models for Objective Auditory Brainstem Response Detection: A Multicenter Validation Study

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing, Peoples R China [2]Chongqing Univ Posts & Telecommun, Inst Adv Sci, Chongqing, Peoples R China [3]Tianyue Xinchuang Informat Technol Corp, Beijing 100020, Peoples R China [4]Peking Univ First Hosp, Dept Otolaryngol Head & Neck Surg, Beijing, Peoples R China [5]Capital Med Univ, Beijing Inst Otolaryngol, Beijing Tongren Hosp, Beijing 100005, Peoples R China [6]Ear Sci Inst Australia, Subiaco, Australia [7]Univ Western Australia, Med Sch, Crawley, Australia [8]Sun Yat Sen Univ, Sch Intelligent Syst Engn, Shenzhen Campus, Shenzhen, Guangdong, Peoples R China
出处:
ISSN:

关键词: auditory brainstem response objective detection deep learning generalizability multicenter validation

摘要:
Auditory brainstem response (ABR) interpretation in clinical practice often relies on visual inspection by audiologists, which is prone to inter-practitioner variability. While deep learning (DL) algorithms have shown promise in objectifying ABR detection in controlled settings, their applicability to real-world clinical data is hindered by small datasets and insufficient heterogeneity. This study evaluates the generalizability of nine DL models for ABR detection using large, multicenter datasets. The primary dataset analyzed, Clinical Dataset I, comprises 128,123 labeled ABRs from 13,813 participants across a wide range of ages and hearing levels, and was divided into a training set (90%) and a held-out test set (10%). The models included convolutional neural networks (CNNs; AlexNet, VGG, ResNet), transformer-based architectures (Transformer, Patch Time Series Transformer [PatchTST], Differential Transformer, and Differential PatchTST), and hybrid CNN-transformer models (ResTransformer, ResPatchTST). Performance was assessed on the held-out test set and four external datasets (Clinical II, Southampton, PhysioNet, Mendeley) using accuracy and area under the receiver operating characteristic curve (AUC). ResPatchTST achieved the highest performance on the held-out test set (accuracy: 91.90%, AUC: 0.976). Transformer-based models, particularly PatchTST, showed superior generalization to external datasets, maintaining robust accuracy across diverse clinical settings. Additional experiments highlighted the critical role of dataset size and diversity in enhancing model robustness. We also observed that incorporating acquisition parameters and demographic features as auxiliary inputs yielded performance gains in cross-center generalization. These findings underscore the potential of DL models-especially transformer-based architectures-for accurate and generalizable ABR detection, and highlight the necessity of large, diverse datasets in developing clinically reliable systems.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 2 区 医学
小类 | 1 区 听力学与言语病理学 1 区 耳鼻喉科学
最新[2025]版:
大类 | 2 区 医学
小类 | 1 区 听力学与言语病理学 1 区 耳鼻喉科学
JCR分区:
出版当年[2023]版:
Q1 AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY Q1 OTORHINOLARYNGOLOGY
最新[2024]版:
Q1 AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY Q1 OTORHINOLARYNGOLOGY

影响因子: 最新[2024版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版] 出版后一年[2024版]

第一作者:
第一作者机构: [1]Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing, Peoples R China [2]Chongqing Univ Posts & Telecommun, Inst Adv Sci, Chongqing, Peoples R China
通讯作者:
通讯机构: [5]Capital Med Univ, Beijing Inst Otolaryngol, Beijing Tongren Hosp, Beijing 100005, Peoples R China [6]Ear Sci Inst Australia, Subiaco, Australia [7]Univ Western Australia, Med Sch, Crawley, Australia
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:28508 今日访问量:0 总访问量:1584 更新日期:2025-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)