高级检索
当前位置: 首页 > 详情页

Automated Hallux Valgus Detection from Foot Photos Using CBAM-Enhanced MobileNetV3 with Data Augmentation

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Xidian Univ, Sch Cyber Engn, Xian 710126, Peoples R China [2]Beijing Tongren Hosp, Beijing 100730, Peoples R China [3]Norwegian Univ Sci & Technol, Dept ICT & Nat Sci, N-7034 Trondheim, Norway [4]Xian Jiaotong Liverpool Univ, Dept Comp, Suzhou 215123, Peoples R China
出处:
ISSN:

关键词: hallux valgus deep learning medical image classification digital foot photographs MobileNetV3

摘要:
Hallux valgus is a common foot deformity. Traditional diagnosis mainly relies on X-ray images, which present radiation risks and require professional equipment, limiting their use in daily screening. In addition, in large-scale community screenings and resource-limited regions, where rapid processing of numerous patients is required, access to radiographic equipment or specialists may be constrained. Therefore, this study improves the MobileNetV3 model to automatically determine the presence of hallux valgus from digital foot photographs. In this study, we used 2934 foot photos from different organizations, combined with the segment anything model (SAM) to extract foot regions and replace the photo backgrounds to simulate different shooting scenarios, and used data enhancement techniques such as rotations and noise to extend the training set to more than 10,000 images to improve the diversity of the data and the model's generalization ability. We evaluated several classification models and achieved over 95% accuracy, precision, recall, and F1 score by training the improved MobileNetV3. Our model offers a cost-effective, radiation-free solution to reduce clinical workload and enhance early diagnosis rates in underserved areas.

语种:
WOS:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 4 区 计算机科学
小类 | 4 区 计算机:信息系统 4 区 工程:电子与电气 4 区 物理:应用
最新[2025]版:
大类 | 4 区 计算机科学
小类 | 4 区 计算机:信息系统 4 区 工程:电子与电气 4 区 物理:应用
JCR分区:
出版当年[2023]版:
Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Q2 PHYSICS, APPLIED
最新[2024]版:
Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Q3 PHYSICS, APPLIED

影响因子: 最新[2024版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版] 出版后一年[2024版]

第一作者:
第一作者机构: [1]Xidian Univ, Sch Cyber Engn, Xian 710126, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:28508 今日访问量:0 总访问量:1584 更新日期:2025-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)