高级检索
当前位置: 首页 > 详情页

Carotid Artery Plague Segmentation Model Based on Dual-Modal

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Univ Shanghai Sci & Technol, Sch Opt Elect & Comp Engn, Shanghai, Peoples R China [2]Shanghai Jiao Tong Univ, Tongren Hosp, Dept Med Ultrasound, Sch Med, Shanghai, Peoples R China
出处:
ISSN:

关键词: carotid artery plague dual-modal segmentation transformer ultrasound

摘要:
Ultrasonography (US) and contrast-enhanced ultrasound (CEUS) are effective imaging tools for analyzing the spatial and temporal characteristics of lesions and diagnosing or predicting diseases. At the same time, US is characterized by blurred boundaries and strong noise interference. Therefore, evaluating plaques and depicting lesions frame-by-frame is a time-consuming task, which poses a challenge in analyzing US videos using deep learning techniques. However, despite the existing methods for US and CEUS image segmentation, there are still limited approaches capable of integrating the feature information from these two distinct image types. Furthermore, these methods require additional optimization to enhance their capacity for extracting comprehensive global contextual information. To address the problem, we propose a U-shaped structured network model based on Transformer in this paper. The network is composed of two parts, that is, the dual-modal information interaction fusion module and the enhanced feature extraction module. The first module is used to extract comprehensive US and CEUS features and fuse them at multiple scales. The second module is used to enhance feature extraction capabilities. This network enables precise localization of the lesion and clear depiction of the region of interest in US. Our model achieved a Dice of 91.62% and an IoU of 88.04% on the carotid plaque segmentation dataset. The experimental results show that the performance of our designed network on the carotid artery dataset is better than that of the SOTA models.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 4 区 计算机科学
小类 | 4 区 工程:电子与电气 4 区 成像科学与照相技术 4 区 光学
最新[2025]版:
大类 | 4 区 计算机科学
小类 | 4 区 工程:电子与电气 4 区 成像科学与照相技术 4 区 光学
JCR分区:
出版当年[2023]版:
Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Q2 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Q2 OPTICS
最新[2024]版:
Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Q2 OPTICS Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY

影响因子: 最新[2024版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版] 出版后一年[2024版]

第一作者:
第一作者机构: [1]Univ Shanghai Sci & Technol, Sch Opt Elect & Comp Engn, Shanghai, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:28499 今日访问量:0 总访问量:1584 更新日期:2025-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)