高级检索
当前位置: 首页 > 详情页

Discovery of novel cathepsin K inhibitors for osteoporosis treatment using a deep learning-based strategy

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Capital Med Univ, Beijing Tongren Hosp, Beijing Diabet Inst, Beijing Key Lab Diabet Res & Care, 1 Dong Jiao Min Xiang, Beijing 100730, Peoples R China [2]Capital Med Univ, Lab Clin Med, Beijing, Peoples R China [3]Capital Med Univ, Coll Pharmaceut Sci, Dept Med Chem, Beijing, Peoples R China
出处:
ISSN:

关键词: Cathepsin K deep learning osteoporosis molecule docking enzyme kinetics

摘要:
BackgroundCathepsin K (CTSK), a cysteine protease of the papain family, exhibits high expression in activated osteoclasts, making it a key therapeutic target for osteoporosis. However, there are currently no CTSK inhibitors available for clinical use.Research design and methodsThe authors employed a combination of deep learning approaches and experimental methods to identify novel CTSK inhibitors. Firstly, the authors utilized Chemprop to develop a predictive model for predicting CTSK inhibition. Subsequently, the top 100 predicted molecules were selected for experimental validation, with the most potent inhibitors chosen for further analysis, including enzyme kinetics, molecular docking, molecular dynamics simulations, and RANKL-induced osteoclastogenesis assays.ResultsThe authors identified six compounds exhibiting concentration-dependent CTSK inhibitory effects, with Quercetin, gamma-Linolenic acid (GLA), and Benzyl isothiocyanate (BITC) demonstrating the highest potency. Enzyme kinetics studies revealed that these inhibitors employ distinct mechanisms of CTSK inhibition. Molecular dynamics simulations further showed that Quercetin and BITC form stable interactions at the CTSK active site. Moreover, in-vitro studies demonstrated that Quercetin and GLA significantly inhibit RANKL-induced osteoclastogenesis in RAW264.7 cells.ConclusionsThis study led to the development of a deep learning model capable of predicting CTSK inhibitors and identified Quercetin, GLA, and BITC as promising candidates for the treatment of osteoporosis.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版
大类 | 2 区 医学
小类 | 2 区 药学
最新[2025]版
大类 | 2 区 医学
小类 | 2 区 药学
JCR分区:
出版当年[2023]版:
Q1 PHARMACOLOGY & PHARMACY
最新[2024]版:
Q1 PHARMACOLOGY & PHARMACY

影响因子: 最新[2024版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版] 出版后一年[2024版]

第一作者:
第一作者机构: [1]Capital Med Univ, Beijing Tongren Hosp, Beijing Diabet Inst, Beijing Key Lab Diabet Res & Care, 1 Dong Jiao Min Xiang, Beijing 100730, Peoples R China [2]Capital Med Univ, Lab Clin Med, Beijing, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Capital Med Univ, Beijing Tongren Hosp, Beijing Diabet Inst, Beijing Key Lab Diabet Res & Care, 1 Dong Jiao Min Xiang, Beijing 100730, Peoples R China [2]Capital Med Univ, Lab Clin Med, Beijing, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:28508 今日访问量:0 总访问量:1584 更新日期:2025-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)