高级检索
当前位置: 首页 > 详情页

FPM-R2Net: Fused Photoacoustic and operating Microscopic imaging with cross-modality Representation and Registration Network

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Shanghai Jiao Tong Univ, Inst Med Robot, Sch Biomed Engn, Shanghai 200240, Peoples R China [2]Shanghai Jiao Tong Univ, Tongren Hosp, Inst Med Robot, Shanghai Key Lab Flexible Med Robot, Shanghai 200240, Peoples R China [3]Shanghai Jiao Tong Univ, Univ Michigan, Shanghai Jiao Tong Univ Joint Inst, Shanghai 200240, Peoples R China
出处:
ISSN:

关键词: Image fusion Photoacoustic microscopy Intraoperative microscopic imaging Deep neural network

摘要:
Robot-assisted microsurgery is a promising technique for a number of clinical specialties including neurosurgery. One of the prerequisites of such procedures is accurate vision guidance, delineating not only the exposed surface details but also embedded microvasculature. Conventional microscopic cameras used for vascular imaging are susceptible to specular reflections and changes in ambient light with low tissue resolution and contrast. Photoacoustic microscopy (PAM) is emerging as a promising tool and increasingly used for vascular imaging due to its high image resolution and tissue contrast. This paper presents a fused microscopic imaging scheme that integrates standard surgical microscopy with PAM for improved intraoperative visualization and guidance. We propose the FPM-R2Net to Fuse Photoacoustic and surgical Microscopic imaging via cross-modality Representation and Registration Network. A MOdality Representation Network (MORNet) is used to extract unified feature representation across white-light and PAM modalities, and a Hierarchical Iterative Registration Network (HIRNet) is used to establish the correspondence between the two modalities in a coarse-to-fine manner based on multi-resolution feature maps. A synthetic dataset with ground truth correspondence and an in vivo dataset of mouse brain vasculature are used to evaluate our proposed network. Extensive validation on the two datasets has shown significant improvements compared to the current state-of-the-art methods assessed with intersection over union and Dice scores (10.3% and 6.6% on the synthetic dataset and 15.9% and 11.8% on the in vivo dataset, respectively).

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 1 区 医学
小类 | 1 区 计算机:人工智能 1 区 计算机:跨学科应用 1 区 工程:生物医学 1 区 核医学
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 计算机:人工智能 1 区 计算机:跨学科应用 1 区 工程:生物医学 1 区 核医学
JCR分区:
出版当年[2023]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2024]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2024版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版] 出版后一年[2024版]

第一作者:
第一作者机构: [1]Shanghai Jiao Tong Univ, Inst Med Robot, Sch Biomed Engn, Shanghai 200240, Peoples R China [2]Shanghai Jiao Tong Univ, Tongren Hosp, Inst Med Robot, Shanghai Key Lab Flexible Med Robot, Shanghai 200240, Peoples R China
通讯作者:
通讯机构: [1]Shanghai Jiao Tong Univ, Inst Med Robot, Sch Biomed Engn, Shanghai 200240, Peoples R China [2]Shanghai Jiao Tong Univ, Tongren Hosp, Inst Med Robot, Shanghai Key Lab Flexible Med Robot, Shanghai 200240, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:28508 今日访问量:0 总访问量:1584 更新日期:2025-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)