高级检索
当前位置: 首页 > 详情页

MIPD: A Multi-Sensory Interactive Perception Dataset for Embodied Intelligent Driving

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China [2]Beijing Tongren Hosp, Inst Ophthalmol, Beijing 100730, Peoples R China [3]Yanshan Univ, Coll Informat Sci & Engn, Qinhuangdao 066004, Hebei, Peoples R China [4]Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China [5]Beijing Inst Technol, Div Energy Mobil Convergence, Zhuhai 519088, Peoples R China [6]Tsinghua Univ, Coll Comp Sci & Technol, Beijing 100084, Peoples R China
出处:
ISSN:

关键词: Autonomous vehicles Cameras Vibrations Laser radar Vehicle dynamics Roads Visualization Robot sensing systems Accuracy Meteorology Autonomous driving embodied intelligence multi-sensory fusion multi-modal perception

摘要:
During the process of driving, humans usually rely on multiple senses to gather information and make decisions. Analogously, in order to achieve embodied intelligence in autonomous driving, it is essential to integrate multidimensional sensory information in order to facilitate interaction with the environment. However, the current multi-modal fusion sensing schemes often neglect these additional sensory inputs, hindering the realization of fully autonomous driving. This paper considers multi-sensory information and proposes a multi-modal interactive perception dataset named MIPD, enabling expanding the current autonomous driving algorithm framework, for supporting the research on embodied intelligent driving. In addition to the conventional camera, lidar, and 4D radar data, our dataset incorporates multiple sensor inputs including sound, light intensity, vibration intensity and vehicle speed to enrich the dataset comprehensiveness. Comprising 126 consecutive sequences, many exceeding twenty seconds, MIPD features over 8,500 meticulously synchronized and annotated frames. Moreover, it encompasses many challenging scenarios, covering various road and lighting conditions. The dataset has undergone thorough experimental validation, producing valuable insights for the exploration of next-generation autonomous driving frameworks. Data, development kit and more details will be available at https://github.com/BUCT-IUSRC/Dataset__MIPD

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 2 区 计算机科学
小类 | 1 区 工程:土木 2 区 工程:电子与电气 2 区 运输科技
最新[2025]版:
大类 | 2 区 计算机科学
小类 | 1 区 工程:土木 2 区 工程:电子与电气 2 区 运输科技
JCR分区:
出版当年[2023]版:
Q1 ENGINEERING, CIVIL Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 TRANSPORTATION SCIENCE & TECHNOLOGY
最新[2024]版:
Q1 ENGINEERING, CIVIL Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 TRANSPORTATION SCIENCE & TECHNOLOGY

影响因子: 最新[2024版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版] 出版后一年[2024版]

第一作者:
第一作者机构: [1]Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:28518 今日访问量:0 总访问量:1589 更新日期:2025-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)