高级检索
当前位置: 首页 > 详情页

Integrating tumor location into artificial intelligence-based prognostic models in cancer

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ ESCI

机构: [1]Shanghai Jiao Tong Univ, Shanghai Tongren Hosp, Sch Med, Dept Gastroenterol, 1111 Xianxia Rd, Shanghai 200336, Peoples R China
出处:
ISSN:

关键词: Tumor location Prognosis Artificial intelligence Artificial intelligence-based prognostic tools Clinical prediction models

摘要:
This letter is a commentary on the findings of Huang et al, who emphasize the prognostic value of tumor location in gastric cancer. Analyzing data from 3287 patients using Kaplan-Meier and multivariate Cox models, the authors found that the tumor location correlated with patient prognosis following surgery. Patients with tumors situated nearer to the stomach's proximal end were associated with shorter survival periods and poorer outcomes. Notably, gender-based differences in tumor markers, particularly carbohydrate antigen 72-4, further highlight the need for sex-specific influence on the tumor location. Despite increasing recognition of tumor location as a prognostic factor, its role remains unclear in clinical prediction models for various cancers. This letter highlights the potential of incorporating tumor location into artificial intelligence -based prognostic tools to enhance prognostic models. It also outlines a stepwise framework for developing these models, from retrospective training to prospective multicenter validation and clinical implementation. In addition, it addresses the technical, ethical, and interoperability challenges critical to successful real-world prognosis.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 4 区 医学
小类 | 4 区 肿瘤学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 肿瘤学
JCR分区:
出版当年[2023]版:
Q3 ONCOLOGY
最新[2024]版:
Q2 ONCOLOGY

影响因子: 最新[2024版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版] 出版后一年[2024版]

第一作者:
第一作者机构: [1]Shanghai Jiao Tong Univ, Shanghai Tongren Hosp, Sch Med, Dept Gastroenterol, 1111 Xianxia Rd, Shanghai 200336, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:28994 今日访问量:0 总访问量:1619 更新日期:2025-10-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)