高级检索
当前位置: 首页 > 详情页

Deep Learning-Based Diagnosis of Lumbar Spondylolisthesis Using X-Ray Imaging

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Capital Med Univ, Beijing Tongren Hosp, Dept Orthoped, Beijing 100730, Peoples R China [2]Tsinghua Univ, Sch Life Sci, Beijing 100084, Peoples R China [3]Tsinghua Shenzhen Int Grad Sch, Inst Biomed & Hlth Engn iBHE, Shenzhen 518071, Peoples R China [4]Tsinghua Univ, Sch Med, Dept Biomed Engn, Beijing 100084, Peoples R China [5]Longwood Valley Med Technol Co Ltd, Beijing 100730, Peoples R China
出处:
ISSN:

关键词: lumbar spondylolisthesis deep learning early diagnosis detection algorithms X-ray imaging

摘要:
Background: Lumbar spondylolisthesis (LS) is a common spinal disorder characterized by the forward displacement of the vertebra. Early detection is challenging due to asymptomatic presentation in the early stages. This study develops and validates an AI-based deep learning model for the early, high-precision diagnosis of LS using lumbar X-ray images. Methods: A total of 3300 lateral lumbar X-ray images were collected from Beijing Tongren Hospital, and an external dataset of 1100 images was used for validation. The images were randomly divided into the training, validation, and test sets. The model uses semantic segmentation to precisely segment vertebral bodies and calculate distances between vertebrae to identify and grade LS using the Meyerding classification. Model performance was compared to other algorithms and clinical experts. Results: The model achieved F1 Scores of 0.92 and 0.91 on the hospital and external datasets, respectively, outperforming other methods. It showed diagnostic accuracies of 96.1% and 94.4%, exceeding the performance of physicians (90.6% and 89.3%). These results highlight the potential of AI in improving diagnostic accuracy and clinical decision-making. Conclusions: Our deep learning model demonstrates high accuracy and reliability in diagnosing LS, providing a valuable tool for early detection and better patient outcomes. Future work will involve expanding the dataset and validating the model in clinical settings.

语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 3 区 医学
小类 | 3 区 医学:内科
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 医学:内科
JCR分区:
出版当年[2023]版:
Q1 MEDICINE, GENERAL & INTERNAL
最新[2024]版:
Q1 MEDICINE, GENERAL & INTERNAL

影响因子: 最新[2024版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版] 出版后一年[2024版]

第一作者:
第一作者机构: [1]Capital Med Univ, Beijing Tongren Hosp, Dept Orthoped, Beijing 100730, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:29017 今日访问量:0 总访问量:1619 更新日期:2025-10-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)