高级检索
当前位置: 首页 > 详情页

Multiple Classifier Fusion and Optimization Automation Focal Cortical Dysplasia Detection on Magnetic Resonance Images

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]Beijing Inst Technol, Sch Opt & Photon, Beijing Engn Res Ctr Mixed Real & Adv Display, Beijing 100081, Peoples R China [2]Capital Med Univ, Beijing Tongren Hosp, Radiol Dept, Beijing 100730, Peoples R China [3]Univ Ghent, Dept Telecommun & Informat Proc imec IPI TELIN, B-9000 Ghent, Belgium [4]Chinese Acad Sci, Inst Automat, Brainnetome Ctr, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China [5]Ghent Univ Hosp, Dept Radiol, B-9000 Ghent, Belgium
出处:
ISSN:

关键词: Focal cortical dysplasia magnetic resonance image brain lesion detection optimal weighted multiple classifiers genetic algorithm

摘要:
In magnetic resonance (MR) images, detection of focal cortical dysplasia (FCD) lesion as a main pathological cue of epilepsy is challenging because of the variability in the presentation of FCD lesions. Existing algorithms appear to have sufficient sensitivity in detecting lesions but also generate large numbers of false-positive (FP) results. In this paper, we propose a multiple classifier fusion and optimization schemes to automatically detect FCD lesions in MR images with reduced FPs through constructing an objective function based on the F-score. Thus, the proposed scheme obtains an improved tradeoff between minimizing FPs and maximizing true positives. The optimization is achieved by incorporating the genetic algorithm into the work scheme. Hence, the contribution of weighting coefficients to different classifications can be effectively determined. The resultant optimized weightings are applied to fuse the classification results. A set of six typical FCD features and six corresponding Z-score maps are evaluated through the mean F-score from multiple classifiers for each feature. From the experimental results, the proposed scheme can automatically detect FCD lesions in 9 out of 10 patients while correctly classifying 31 healthy controls. The proposed scheme acquires a lower FP rate and a higher F-score in comparison with two state-of-the-art methods.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2017]版:
大类 | 3 区 工程技术
小类 | 2 区 计算机:信息系统 3 区 工程:电子与电气 3 区 电信学
最新[2025]版:
大类 | 4 区 计算机科学
小类 | 4 区 计算机:信息系统 4 区 工程:电子与电气 4 区 电信学
JCR分区:
出版当年[2016]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q2 TELECOMMUNICATIONS
最新[2024]版:
Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Q2 TELECOMMUNICATIONS

影响因子: 最新[2024版] 最新五年平均 出版当年[2016版] 出版当年五年平均 出版前一年[2015版] 出版后一年[2017版]

第一作者:
第一作者机构: [1]Beijing Inst Technol, Sch Opt & Photon, Beijing Engn Res Ctr Mixed Real & Adv Display, Beijing 100081, Peoples R China [2]Capital Med Univ, Beijing Tongren Hosp, Radiol Dept, Beijing 100730, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:29117 今日访问量:0 总访问量:1619 更新日期:2025-10-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)