高级检索
当前位置: 首页 > 详情页

IKK2 Inhibition Using TPCA-1-Loaded PLGA Microparticles Attenuates Laser-Induced Choroidal Neovascularization and Macrophage Recruitment

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Departments of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, United States of America [2]James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, United States of America [3]Department of Chemistry and Biochemistry, University of North Georgia, Oakwood, Georgia, United States of America [4]Beijing Institute of Ophthalmology, Beijing Tong-Ren Eye Center, Capital Medical University, Beijing, China, [5]Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
出处:
ISSN:

摘要:
The inhibition of NF-kappa B by genetic deletion or pharmacological inhibition of IKK2 significantly reduces laser-induced choroid neovascularization (CNV). To achieve a sustained and controlled intraocular release of a selective and potent IKK2 inhibitor, 2-[(aminocarbonyl) amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide (TPCA-1) (MW: 279.29), we developed a biodegradable poly-lactide-co-glycolide (PLGA) polymer-delivery system to further investigate the anti-neovascularization effects of IKK2 inhibition and in vivo biosafety using laser-induced CNV mouse model. The solvent-evaporation method produced spherical TPCA-1-loaded PLGA microparticles characterized with a mean diameter of 2.4 1/4m and loading efficiency of 80%. Retrobulbar administration of the TPCA-1-loaded PLGA microparticles maintained a sustained drug level in the retina during the study period. No detectable TPCA-1 level was observed in the untreated contralateral eye. The anti-CNV effect of retro-bulbarly administrated TPCA-1-loaded PLGA microparticles was assessed by retinal fluorescein leakage and isolectin staining methods, showing significantly reduced CNV development on day 7 after laser injury. Macrophage infiltration into the laser lesion was attenuated as assayed by choroid/RPE flat-mount staining with anti-F4/80 antibody. Consistently, laser induced expressions of Vegfa and Ccl2 were inhibited by the TPCA-1-loaded PLGA treatment. This TPCA-1 delivery system did not cause any noticeable cellular or functional toxicity to the treated eyes as evaluated by histology and optokinetic reflex (OKR) tests; and no systemic toxicity was observed. We conclude that retrobulbar injection of the small-molecule IKK2 inhibitor TPCA-1, delivered by biodegradable PLGA microparticles, can achieve a sustained and controllable drug release into choroid/retina and attenuate laser-induced CNV development without causing apparent systemic toxicity. Our results suggest a potential clinical application of TPCA-1 delivered by microparticles in treatment of CNV in the patients with age-related macular degeneration and other retinal neovascularization diseases.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2014]版:
大类 | 3 区 生物
小类 | 3 区 综合性期刊
最新[2025]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
JCR分区:
出版当年[2013]版:
Q1 MULTIDISCIPLINARY SCIENCES
最新[2024]版:
Q2 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2024版] 最新五年平均 出版当年[2013版] 出版当年五年平均 出版前一年[2012版] 出版后一年[2014版]

第一作者:
第一作者机构: [1]Departments of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, United States of America [2]James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
通讯作者:
通讯机构: [1]Departments of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, Kentucky, United States of America [2]James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:28517 今日访问量:0 总访问量:1589 更新日期:2025-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)