高级检索
当前位置: 首页 > 详情页

Torin 1 alleviates impairment of TFEB-mediated lysosomal biogenesis and autophagy in TGFBI (p.G623_H626del)-linked Thiel-Behnke corneal dystrophy

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Harbin Med Univ, Affiliated Hosp 1, Dept Ophthalmol, Harbin, Peoples R China [2]Capital Med Univ, Beijing Inst Ophthalmol, Beijing Tongren Hosp, Beijing, Peoples R China
出处:
ISSN:

关键词: Autophagy lysosome dysfunction TBCD TFEB TGFBI torin 1

摘要:
Thiel-Behnke corneal dystrophy (TBCD) is an epithelial-stromal TGFBI dystrophy caused by mutations in the TGFBI (transforming growth factor beta induced) gene, though the underlying mechanisms and pathogenesis of TBCD are still obscure. The study identifies a novel mutation in the TGFBI gene (p.Gly623_His626del) in a TBCD pedigree. Characteristics of the typical vacuole formation, irregular corneal epithelial thickening and thinning, deposition of eosinophilic substances beneath the epithelium, and involvement of the anterior stroma were observed in this pedigree via transmission electron microscopy (TEM) and histological staining. Tgfbi-p.Gly623_Tyr626del mouse models of TBCD were subsequently generated via CRISPR/Cas9 technology, and the above characteristics were further verified via TEM and histological staining. Lysosomal dysfunction and downregulation of differential expression protein CTSD (cathepsin D) were observed using LysoTracker Green DND-26 and proteomic analysis, respectively. Hence, lysosomal dysfunction probably leads to autophagic flux obstruction in TBCD; this was supported by enhanced LC3-II and SQSTM1 levels and decreased CTSD. TFEB (transcription factor EB) was prominently decreased in TBCD corneal fibroblasts and administration of ATP-competitive MTOR inhibitor torin 1 reversed this decline, resulting in the degradation of accumulated mut-TGFBI (mutant TGFBI protein) via the ameliorative lysosomal function and autophagic flux owing to elevated TFEB activity as measured by western blot, confocal microscopy, and flow cytometry. Transfected HEK 293 cells overexpressing human full-length WT-TGFBI and mut-TGFBI were generated to further verify the results obtained in human corneal fibroblasts. Amelioration of lysosome dysfunction may therefore have therapeutic efficacy in the treatment of TBCD.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 1 区 生物学
小类 | 2 区 细胞生物学
最新[2025]版:
大类 | 1 区 生物学
小类 | 2 区 细胞生物学
JCR分区:
出版当年[2020]版:
Q1 CELL BIOLOGY
最新[2023]版:
Q1 CELL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Harbin Med Univ, Affiliated Hosp 1, Dept Ophthalmol, Harbin, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Harbin Med Univ, Affiliated Hosp 1, Dept Ophthalmol, Harbin, Peoples R China [*1]Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:23549 今日访问量:0 总访问量:1282 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)