高级检索
当前位置: 首页 > 详情页

Deep learning algorithms for detection of diabetic macular edema in OCT images: A systematic review and meta-analysis

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China [2]Capital Medical University, Beijing, China
出处:
ISSN:

关键词: deep learning artificial intelligence algorithm optical coherence tomography diabetic macular edema

摘要:
Purpose Artificial intelligence (AI) can detect diabetic macular edema (DME) from optical coherence tomography (OCT) images. We aimed to evaluate the performance of deep learning neural networks in DME detection. Methods Embase, Pubmed, the Cochrane Library, and IEEE Xplore were searched up to August 14, 2021. We included studies using deep learning algorithms to detect DME from OCT images. Two reviewers extracted the data independently, and the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool was applied to assess the risk of bias. The study is reported according to Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies (PRISMA-DTA). Results Ninteen studies involving 41005 subjects were included. The pooled sensitivity and specificity were 96.0% (95% confidence interval (CI): 93.9% to 97.3%) and 99.3% (95% CI: 98.2% to 99.7%), respectively. Subgroup analyses found that data set selection, sample size of training set and the choice of OCT devices contributed to the heterogeneity (all P < 0.05). While there was no association between the diagnostic accuracy and transfer learning adoption or image management (all P > 0.05). Conclusions Deep learning methods, particularly the convolutional neural networks (CNNs) could effectively detect clinically significant DME, which can provide referral suggestions to the patients.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 4 区 医学
小类 | 4 区 眼科学
最新[2023]版:
大类 | 4 区 医学
小类 | 4 区 眼科学
JCR分区:
出版当年[2021]版:
Q4 OPHTHALMOLOGY
最新[2023]版:
Q3 OPHTHALMOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
通讯作者:
通讯机构: [1]Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China [*1]Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, 1 Dong Jiao Min Lane, Beijing, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)