高级检索
当前位置: 首页 > 详情页

Segmentation of Lymph Nodes in Ultrasound Images Using U-Net Convolutional Neural Networks and Gabor-Based Anisotropic Diffusion

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]Shanghai Univ, Shanghai Inst Adv Commun & Data Sci, SMART Smart Med & AI Based Radiol Technol Lab, Shanghai, Peoples R China [2]Shanghai Univ, Sch Commun & Informat Engn, Nanchen Rd,Room 803,Xiangying Bldg 333, Shanghai 200444, Peoples R China [3]Shanghai Jiao Tong Univ, Tongren Hosp, Dept Ultrasound, Sch Med, 1111 Xianxia Rd, Shanghai 200050, Peoples R China [4]School of Communication and Information Engineering, Shanghai University, Nanchen Rd, Room 803, Xiangying Building, No. 333, Shanghai 200444, China
出处:
ISSN:

关键词: Segmentation U-Net Lymph nodes Ultrasound Gabor-based anisotropic diffusion

摘要:
Purpose The automated segmentation of lymph nodes (LNs) in ultrasound images is challenging, largely because of speckle noise and echogenic hila. This paper proposes a fully automatic and accurate method for LN segmentation in ultrasound that overcomes these issues. Methods The proposed segmentation method integrates diffusion-based despeckling, U-Net convolutional neural networks and morphological operations. First, the speckle noise is suppressed and the lymph node edges are enhanced using Gabor-based anisotropic diffusion (GAD). Then, a modified U-Net model is used to segment the LNs excluding any echogenic hila. Finally, morphological operations are undertaken to segment the entire LNs by filling in any regions occupied by echogenic hila. Results A total of 531 lymph nodes from 526 patients were segmented using the proposed method. Its segmentation performance was evaluated in terms of its accuracy, sensitivity, specificity, Jaccard similarity and Dice coefficient, for which it achieved values of 0.934, 0.939, 0.937, 0.763 and 0.865, respectively. Conclusion The proposed method automatically and accurately segments LNs in ultrasound images, enhancing the prospects of being able to undertake artificial intelligence (AI)-based diagnosis of lymph node diseases.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 4 区 医学
小类 | 4 区 工程:生物医学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 工程:生物医学
JCR分区:
出版当年[2019]版:
Q4 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q4 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Shanghai Univ, Shanghai Inst Adv Commun & Data Sci, SMART Smart Med & AI Based Radiol Technol Lab, Shanghai, Peoples R China [2]Shanghai Univ, Sch Commun & Informat Engn, Nanchen Rd,Room 803,Xiangying Bldg 333, Shanghai 200444, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Shanghai Univ, Shanghai Inst Adv Commun & Data Sci, SMART Smart Med & AI Based Radiol Technol Lab, Shanghai, Peoples R China [2]Shanghai Univ, Sch Commun & Informat Engn, Nanchen Rd,Room 803,Xiangying Bldg 333, Shanghai 200444, Peoples R China [4]School of Communication and Information Engineering, Shanghai University, Nanchen Rd, Room 803, Xiangying Building, No. 333, Shanghai 200444, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:23624 今日访问量:3 总访问量:1285 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)