高级检索
当前位置: 首页 > 详情页

Construction of a Support Vector Machine-Based Classifier for Pulmonary Arterial Hypertension Patients

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Cardiology, Wuxi Huishan District People’s Hospital, Wuxi, China, [2]Department of Hospital, Wuxi Huishan District People’s Hospital, Wuxi, China, [3]Department of Cardiology, Beijing Tongren Hospital, Beijing, China, [4]Department of Cardiology, Shanghai Dongfang Hospital, Shanghai, China
出处:
ISSN:

关键词: pulmonary arterial hypertension SVM-RFE classifier biomarker Na

摘要:
Pulmonary arterial hypertension (PAH) is a disease leading to right heart failure and death due to increased pulmonary arterial tension and vascular resistance. So far, PAH has not been fully understood, and current treatments are much limited. Gene expression profiles of healthy people and PAH patients in GSE33463 dataset were analyzed in this study. Then 110 differentially expressed genes (DEGs) were obtained. Afterward, the PPI network based on DEGs was constructed, followed by the analysis of functional modules, whose results showed that the genes in the major function modules significantly enriched in immune-related functions. Moreover, four optimal feature genes were screened from the DEGs by support vector machine-recursive feature elimination (SVM-RFE) algorithm (EPB42, IFIT2, FOSB, and SNF1LK). The receiver operating characteristic curve showed that the SVM classifier based on optimal feature genes could effectively distinguish healthy people from PAH patients. Last, the expression of optimal feature genes was analyzed in the GSE33463 dataset and clinical samples. It was found that EPB42 and IFIT2 were highly expressed in PAH patients, while FOSB and SNF1LK were lowly expressed. In conclusion, the four optimal feature genes screened here are potential biomarkers for PAH and are expected to be used in early diagnosis for PAH.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 3 区 生物
小类 | 3 区 遗传学
最新[2025]版:
大类 | 3 区 生物学
小类 | 3 区 遗传学
JCR分区:
出版当年[2019]版:
Q2 GENETICS & HEREDITY
最新[2023]版:
Q2 GENETICS & HEREDITY

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Department of Cardiology, Wuxi Huishan District People’s Hospital, Wuxi, China,
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:25463 今日访问量:0 总访问量:1498 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)