高级检索
当前位置: 首页 > 详情页

Magnesium increases insulin-dependent glucose uptake in adipocytes

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Radboud Univ Nijmegen, Radboud Inst Mol Life Sci, Dept Physiol, Med Ctr, Nijmegen, Netherlands [2]Jeroen Bosch Hosp, Lab Clin Chem & Hematol, sHertogenbosch, Netherlands [3]Capital Med Univ, Beijing Tongren Hosp, Beijing Tongren Eye Ctr, Beijing Ophthalmol & Visual Sci Key Lab,Beijing In, Beijing, Peoples R China [4]Radboud Univ Nijmegen, Radboud Inst Mol Life Sci, Dept Internal Med, Med Ctr, Nijmegen, Netherlands
出处:
ISSN:

关键词: Magnesium type 2 diabetes insulin resistance glycemic control glucose transporter 4

摘要:
BackgroundType 2 diabetes (T2D) is characterized by a decreased insulin sensitivity. Magnesium (Mg2+) deficiency is common in people with T2D. However, the molecular consequences of low Mg2+ levels on insulin sensitivity and glucose handling have not been determined in adipocytes. The aim of this study is to determine the role of Mg2+ in the insulin-dependent glucose uptake. MethodsFirst, the association of low plasma Mg2+ with markers of insulin resistance was assessed in a cohort of 395 people with T2D. Secondly, the molecular role of Mg2+ in insulin-dependent glucose uptake was studied by incubating 3T3-L1 adipocytes with 0 or 1 mmol/L Mg2+ for 24 hours followed by insulin stimulation. Radioactive-glucose labelling, enzymatic assays, immunocytochemistry and live microscopy imaging were used to analyze the insulin receptor phosphoinositide 3-kinases/Akt pathway. Energy metabolism was assessed by the Seahorse Extracellular Flux Analyzer. ResultsIn people with T2D, plasma Mg2+ concentration was inversely associated with markers of insulin resistance; i.e., the lower Mg2+, the more insulin resistant. In Mg2+-deficient adipocytes, insulin-dependent glucose uptake was decreased by approximately 50% compared to control Mg(2+)condition. Insulin receptor phosphorylation Tyr1150/1151 and PIP3 mass were not decreased in Mg2+-deficient adipocytes. Live imaging microscopy of adipocytes transduced with an Akt sensor (FoxO1-Clover) demonstrated that FoxO1 translocation from the nucleus to the cytosol was reduced, indicting less Akt activation in Mg2+-deficient adipocytes. Immunocytochemistry using a Lectin membrane marker and at the membrane located Myc epitope-tagged glucose transporter 4 (GLUT4) demonstrated that GLUT4 translocation was diminished in insulin-stimulated Mg2+-deficient adipocytes compared to control conditions. Energy metabolism in Mg2+ deficient adipocytes was characterized by decreased glycolysis, upon insulin stimulation. ConclusionsMg(2+) increases insulin-dependent glucose uptake in adipocytes and suggests that Mg2+ deficiency may contribute to insulin resistance in people with T2D.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 3 区 医学
小类 | 3 区 内分泌学与代谢
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 内分泌学与代谢
JCR分区:
出版当年[2020]版:
Q1 ENDOCRINOLOGY & METABOLISM
最新[2023]版:
Q2 ENDOCRINOLOGY & METABOLISM

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Radboud Univ Nijmegen, Radboud Inst Mol Life Sci, Dept Physiol, Med Ctr, Nijmegen, Netherlands
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:25471 今日访问量:0 总访问量:1498 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)