高级检索
当前位置: 首页 > 详情页

Knee Cartilage Defect Assessment by Graph Representation and Surface Convolution

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai 200030, Peoples R China [2]Shanghai United Imaging Intelligence Co Ltd, Shanghai 200230, Peoples R China [3]Zhengzhou Univ, Affiliated Hosp 1, Dept Magnet Resonance Imaging, Zhengzhou 450052, Peoples R China [4]Nanjing Univ Informat Sci & Technol, Inst AI Med, Sch Artificial Intelligence, Nanjing 210044, Peoples R China [5]Shanghai Clin Res & Trial Ctr, Shanghai 201210, Peoples R China [6]Shanghai Jiao Tong Univ, Tongren Hosp, Sch Med, Dept Imaging, Shanghai 200050, Peoples R China [7]Shanghai Tech Univ, Sch Biomed Engn, Shanghai 201210, Peoples R China
出处:
ISSN:

关键词: Magnetic resonance imaging Convolution Diseases Deep learning Bones Three-dimensional displays Shape Cartilage defect classification knee osteoarthritis graph representation surface convolution

摘要:
Knee osteoarthritis (OA) is the most common osteoarthritis and a leading cause of disability. Cartilage defects are regarded as major manifestations of knee OA, which are visible by magnetic resonance imaging (MRI). Thus early detection and assessment for knee cartilage defects are important for protecting patients from knee OA. In this way, many attempts have been made on knee cartilage defect assessment by applying convolutional neural networks (CNNs) to knee MRI. However, the physiologic characteristics of the cartilage may hinder such efforts: the cartilage is a thin curved layer, implying that only a small portion of voxels in knee MRI can contribute to the cartilage defect assessment; heterogeneous scanning protocols further challenge the feasibility of the CNNs in clinical practice; the CNN-based knee cartilage evaluation results lack interpretability. To address these challenges, we model the cartilages structure and appearance from knee MRI into a graph representation, which is capable of handling highly diverse clinical data. Then, guided by the cartilage graph representation, we design a non-Euclidean deep learning network with the self-attention mechanism, to extract cartilage features in the local and global, and to derive the final assessment with a visualized result. Our comprehensive experiments show that the proposed method yields superior performance in knee cartilage defect assessment, plus its convenient 3D visualization for interpretability.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 工程技术
小类 | 1 区 核医学 1 区 工程:电子与电气 1 区 成像科学与照相技术 1 区 工程:生物医学 1 区 计算机:跨学科应用
最新[2023]版:
大类 | 1 区 医学
小类 | 1 区 计算机:跨学科应用 1 区 工程:生物医学 1 区 工程:电子与电气 1 区 成像科学与照相技术 1 区 核医学
JCR分区:
出版当年[2021]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 ENGINEERING, BIOMEDICAL Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai 200030, Peoples R China [2]Shanghai United Imaging Intelligence Co Ltd, Shanghai 200230, Peoples R China
通讯作者:
通讯机构: [5]Shanghai Clin Res & Trial Ctr, Shanghai 201210, Peoples R China [7]Shanghai Tech Univ, Sch Biomed Engn, Shanghai 201210, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21173 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)