高级检索
当前位置: 首页 > 详情页

A spatiotemporal convolution recurrent neural network for pixel-level peripapillary atrophy prediction using sequential fundus images

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Beijing Inst Technol, Beijing 100081, Peoples R China [2]Capital Med Univ, Beijing Inst Ophthalmol, Beijing Tongren Hosp, Beijing 100005, Peoples R China
出处:
ISSN:

关键词: Peripapillary atrophy prediction Sequential fundus images Temporal memory Spatiotemporal prediction Scheduled sampling

摘要:
The progression of peripapillary atrophy (PPA) is closely associated with the development of retinal diseases such as myopia and glaucoma. PPA prediction employing longitudinal images to obtain its progress trend can facilitate personalized treatment. Although existing studies have attempted to predict the persistence of PPA, such studies cannot provide quantitative measurement for personalized treatment. In this paper, we propose a spatiotemporal framework for pixel -level PPA prediction using sequential fundus images, including feature extractor, temporal memory, and spatiotemporal prediction modules. To take advantage of historical information, a temporal memory module is used, integrating current and prior features to build sequential data of features. To further enhance the prediction performance, the recurrent neural network states in a spatiotemporal prediction module transmit between different layers, enabling high-level states to guide the learning of low-level states. To handle missing data in clinical follow-up data, we use the predicted output of the spatiotemporal prediction module to substitute the missing data, and the scheduled -sampling strategy is employed in training. Extensive experiments conducted using a clinical dataset demonstrate that our proposed method achieves a satisfactory performance compared with the start -of -the -art models. The proposed approach can be applied using clinical data to obtain various quantitative indicators for personalized treatment and prevention of retinal disease.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 1 区 计算机科学
小类 | 1 区 计算机:跨学科应用 2 区 计算机:人工智能
最新[2025]版:
大类 | 2 区 计算机科学
小类 | 2 区 计算机:人工智能 2 区 计算机:跨学科应用
JCR分区:
出版当年[2022]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
最新[2023]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Beijing Inst Technol, Beijing 100081, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:25498 今日访问量:0 总访问量:1499 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)