高级检索
当前位置: 首页 > 详情页

Coarse-to-Fine Latent Diffusion Model for Glaucoma Forecast on Sequential Fundus Images

文献详情

资源类型:
WOS体系:

收录情况: ◇ CPCI(ISTP)

机构: [1]Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Peoples R China [2]Chinese Univ Hong Kong, Inst Med Intelligence & XR, Hong Kong, Peoples R China [3]Chinese Univ Hong Kong, Shenzhen Res Inst, Hong Kong, Peoples R China [4]Nanjing Univ Sci & Technol, Dept Comp Sci & Engn, Nanjing, Peoples R China [5]Henan Acad Innovat Med Sci, Zhengzhou, Peoples R China [6]Beijing Tongren Eye Ctr, Beijing Key Lab Ophthalmol & Visual Sci, Beijing, Peoples R China
出处:
ISSN:

关键词: Latent Diffusion Glaucoma Forecast Fundus Image

摘要:
Glaucoma is one of the leading causes of irreversible blindness worldwide. Predicting the future status of glaucoma is essential for early detection and timely intervention of potential patients and avoiding the outcome of blindness. Based on historical fundus images from patients, existing glaucoma forecast methods directly predict the probability of developing glaucoma in the future. In this paper, we propose a novel glaucoma forecast method called Coarse-to-Fine Latent Diffusion Model (C2F-LDM) to generatively predict the possible features at any future time point in the latent space based on sequential fundus images. After obtaining the predicted features, we can detect the probability of developing glaucoma and reconstruct future fundus images for visualization. Since all fundus images in the sequence are sampled at irregular time points, we propose a time-adaptive sequence encoder that encodes the sequential fundus images with their irregular time intervals as the historical condition to guide the latent diffusion model, making the model capable of capturing the status changes of glaucoma over time. Furthermore, a coarse-to-fine diffusion strategy improves the quality of the predicted features. We verify C2F-LDM on the public glaucoma forecast dataset SIGF. C2F-LDM presents better quantitative results than other state-of-the-art forecast methods and provides visual results for qualitative evaluations.

基金:
语种:
被引次数:
WOS:
第一作者:
第一作者机构: [1]Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Peoples R China [3]Chinese Univ Hong Kong, Shenzhen Res Inst, Hong Kong, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:25498 今日访问量:1 总访问量:1500 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)