高级检索
当前位置: 首页 > 详情页

Fundus image-based cataract classification using a hybrid convolutional and recurrent neural network

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]Beijing Univ Technol, Sch Software Engn, Beijing 100124, Peoples R China [2]Beijing Engn Res Ctr IoT Software & Syst, Beijing 100124, Peoples R China [3]Univ Aizu, Comp Sci Div, Aizu Wakamatsu, Fukushima 9658580, Japan [4]Sukkur IBA Univ, Dept Comp Sci, Sukkur 65200, Pakistan [5]Univ Educ, Div Sci & Technol, Lahore 54000, Pakistan [6]Capital Med Univ, Beijing Tongren Hosp, Beijing Tongren Eye Ctr, Beijing, Peoples R China
出处:
ISSN:

关键词: Cataract detection Fundus images CNN Retinal diseases Transfer learning

摘要:
Cataract is the most prevailing reason for blindness across the globe, which occupies about 4.2% population of the world. Even with the developments in visual sciences, fundus image-based diagnosis is deemed as a gold standard for cataract detection and grading. Though the increase in the workload of ophthalmologists and complexity of fundus images, the results may be subject to intelligence. Therefore, the development of an automatic method for cataract detection is necessary to prevent visual impairment and save medical resources. This paper aims to provide a novel hybrid convolutional and recurrent neural network (CRNN) for fundus image-based cataract classification. The proposed CRNN fuses the advantages of convolution neural network and recurrent neural network to preserve long- and short-term spatial correlation between the patches. Coupled with transfer learning, we adopt AlexNet, GoogLeNet, ResNet and VGGNet to extract multilevel feature representation and to analyse how well these models perform cataract classification. The results demonstrate that the proposed method outperforms state-of-the-art methods with an average accuracy of 0.9739 for four-class cataract classification and provides a compelling reason to be applied for other retinal diseases.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 4 区 工程技术
小类 | 4 区 计算机:软件工程
最新[2023]版:
大类 | 3 区 计算机科学
小类 | 3 区 计算机:软件工程
JCR分区:
出版当年[2019]版:
Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
最新[2023]版:
Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Beijing Univ Technol, Sch Software Engn, Beijing 100124, Peoples R China
通讯作者:
通讯机构: [1]Beijing Univ Technol, Sch Software Engn, Beijing 100124, Peoples R China [2]Beijing Engn Res Ctr IoT Software & Syst, Beijing 100124, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)