高级检索
当前位置: 首页 > 详情页

Automatic classification of retinal diseases with transfer learning-based lightweight convolutional neural network

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Department of Biomedical Engineering, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing University of Technology, Beijing 100124, China [2]Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China [3]Sports and Medicine Integrative Innovation Center, Capital University of Physical Education and Sports, Beijing 100191, China
出处:
ISSN:

关键词: Fundus images Retinal diseases Transfer learning Lightweight convolutional neural network Deep learning

摘要:
Diabetic retinopathy (DR) and diabetic macular edema (DME) are the major causes of permanent blindness in the working-age population. Deep learning methods have been proposed to automatically grade DR and DME for ophthalmologists' design of tailored treatments for patients. However, these methods are computationally intensive with a large number of parameters and affect the optimization of hyperparameters, making them challenging to deploy to mobile or embedded devices with limited computer resources. In this paper, we developed a transfer learning-based lightweight convolutional neural network to jointly classify the severity of DR and DME. Using fivefold cross-validation, our model achieved an average accuracy, precision, recall, specificity, and F1-score of 0.9666, 0.9700, 0.9685, 0.9932, and 0.9663, respectively, better than MobileNet V2, while the number of parameters and the recognition speed were dramatically less than those of MobileNet V2 and ResNet50. These results show that our model is hopeful in diagnosing retinopathy in clinical trials, even when configured for mobile and embedded devices.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 工程技术
小类 | 3 区 工程:生物医学
最新[2023]版:
大类 | 2 区 医学
小类 | 3 区 工程:生物医学
JCR分区:
出版当年[2021]版:
Q2 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q1 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Department of Biomedical Engineering, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing University of Technology, Beijing 100124, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)