高级检索
当前位置: 首页 > 详情页

Deep learning system for screening AIDS-related cytomegalovirus retinitis with ultra-wide-field fundus images

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Ophthalmology, Beijing Youan Hospital, Capital Medical University, Beijing, China. [2]Beijing Tongren Eye Centre, Beijing Key Laboratory of Intraocular Tumour Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China. [3]Chongqing Chang'an Industrial Group Co. Ltd, Chongqing, China.
出处:
ISSN:

关键词: AIDS Cytomegalovirus retinitis deep learning Ultra-wide-field image Heat maps

摘要:
Ophthalmological screening for cytomegalovirus retinitis (CMVR) for HIV/AIDS patients is important to prevent lifelong blindness. Previous studies have shown good properties of automated CMVR screening using digital fundus images. However, the application of a deep learning (DL) system to CMVR with ultra-wide-field (UWF) fundus images has not been studied, and the feasibility and efficiency of this method are uncertain.In this study, we developed, internally validated, externally validated, and prospectively validated a DL system to detect AIDS-related from UWF fundus images from different clinical datasets. We independently used the InceptionResnetV2 network to develop and internally validate a DL system for identifying active CMVR, inactive CMVR, and non-CMVR in 6960 UWF fundus images from 862 AIDS patients and validated the system in a prospective and an external validation data set using the area under the curve (AUC), accuracy, sensitivity, and specificity. A heat map identified the most important area (lesions) used by the DL system for differentiating CMVR.The DL system showed AUCs of 0.945 (95 % confidence interval [CI]: 0.929, 0.962), 0.964 (95 % CI: 0.870, 0.999) and 0.968 (95 % CI: 0.860, 1.000) for detecting active CMVR from non-CMVR and 0.923 (95 % CI: 0.908, 0.938), 0.902 (0.857, 0.948) and 0.884 (0.851, 0.917) for detecting active CMVR from non-CMVR in the internal cross-validation, external validation, and prospective validation, respectively. Deep learning performed promisingly in screening CMVR. It also showed the ability to differentiate active CMVR from non-CMVR and inactive CMVR as well as to identify active CMVR and inactive CMVR from non-CMVR (all AUCs in the three independent data sets >0.900). The heat maps successfully highlighted lesion locations.Our UWF fundus image-based DL system showed reliable performance for screening AIDS-related CMVR showing its potential for screening CMVR in HIV/AIDS patients, especially in the absence of ophthalmic resources.© 2024 The Authors.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
最新[2023]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
JCR分区:
出版当年[2022]版:
Q2 MULTIDISCIPLINARY SCIENCES
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Department of Ophthalmology, Beijing Youan Hospital, Capital Medical University, Beijing, China.
共同第一作者:
通讯作者:
通讯机构: [1]Department of Ophthalmology, Beijing Youan Hospital, Capital Medical University, Beijing, China. [2]Beijing Tongren Eye Centre, Beijing Key Laboratory of Intraocular Tumour Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China. [*1]Beijing Tongren Hospital, Dong Jiao Min Xiang, Dong Cheng District, 100730 Beijing, China. [*2]Beijing You’an Hospital, No.8, Xi Tou Tiao, Youanmen wai, Fengtai District, 100069, Beijing, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21166 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)