高级检索
当前位置: 首页 > 详情页

Automated Classification of Arterioles and Venules for Retina Fundus Images Using Dual Deeply-Supervised Network

文献详情

资源类型:
WOS体系:

收录情况: ◇ CPCI(ISTP) ◇ EI

机构: [1]Peking Univ, Ctr Data Sci, Beijing 100871, Peoples R China [2]Peking Univ, Beijing Inst Big Data Res, Beijing 100871, Peoples R China [3]Peking Univ, Dept Cardiol, Hosp 1, Beijing 100034, Peoples R China [4]Capital Med Univ, Beijing Tongren Hosp, Beijing 100730, Peoples R China [5]MGH BWH Ctr Clin Data Sci, Boston, MA 02115 USA
出处:
ISSN:

关键词: Deep learning Convolution neural network Dual supervision Skip connection

摘要:
Different patterns of retinal arterioles and venules in the fundus images form an important metric to measure the disease severity. Therefore, an accurate classification of arterioles and venules is greatly necessary. In this work, we propose a novel network, named as the dual Deeply-Supervised Network (dual DSN), to classify arterioles and venules on retinal fundus images. We employ the U-shape network (U-Net) as the backbone of our proposed model. Our proposed dual DSN produces an auxiliary output of the network at every scale, which generates a loss by comparing to the manual annotation. The losses in the encoding path of dual DSN regularize the low-level features, while those in the decoding path of dual DSN regularize the high-level features. In sum, such losses in dual DSN form dual supervision to the backbone U-Net and capture the multi-level features of the input image, which improves the classification of retinal arterioles and venules. The experimental results demonstrate that the proposed dual DSN outperforms the previous state-of-the-art methods on DRIVE dataset with an accuracy of 95.0%.

语种:
被引次数:
WOS:
第一作者:
第一作者机构: [1]Peking Univ, Ctr Data Sci, Beijing 100871, Peoples R China
通讯作者:
通讯机构: [1]Peking Univ, Ctr Data Sci, Beijing 100871, Peoples R China [2]Peking Univ, Beijing Inst Big Data Res, Beijing 100871, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21166 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)