高级检索
当前位置: 首页 > 详情页

Deep Learning-Based Estimation of Axial Length and Subfoveal Choroidal Thickness From Color Fundus Photographs

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Capital Med Univ, Beijing Tongren Hosp,Med Artificial Intelligence, Beijing Tongren Eye Ctr,Beijing Ophthalmol & Visu, Minist Ind & Informat Technol,Beijing Key Lab Int, Beijing, Peoples R China [2]Beijing Eaglevis Technol Co Ltd, Beijing, Peoples R China [3]Capital Med Univ, Beijing Tongren Hosp, Beijing Inst Ophthalmol, Beijing Ophthalmol & Visual Sci Key Lab,Beijing T, Beijing, Peoples R China [4]Monash Univ, eRes Ctr, Melbourne, Vic, Australia [5]Monash Univ, Fac Engn, ECSE, Melbourne, Vic, Australia [6]Heidelberg Univ, Med Fac Mannheim, Dept Ophthalmol, Mannheim, Germany
出处:
ISSN:

关键词: deep learning convolution neural network axial length subfoveal choroidal thickness fundus photography fundus image

摘要:
This study aimed to develop an automated computer-based algorithm to estimate axial length and subfoveal choroidal thickness (SFCT) based on color fundus photographs. In the population-based Beijing Eye Study 2011, we took fundus photographs and measured SFCT by optical coherence tomography (OCT) and axial length by optical low-coherence reflectometry. Using 6394 color fundus images taken from 3468 participants, we trained and evaluated a deep-learning-based algorithm for estimation of axial length and SFCT. The algorithm had a mean absolute error (MAE) for estimating axial length and SFCT of 0.56 mm [95% confidence interval (CI): 0.53,0.61] and 49.20 mu m (95% CI: 45.83,52.54), respectively. Estimated values and measured data showed coefficients of determination of r(2) = 0.59 (95% CI: 0.50,0.65) for axial length and r(2) = 0.62 (95% CI: 0.57,0.67) for SFCT. Bland-Altman plots revealed a mean difference in axial length and SFCT of -0.16 mm (95% CI: -1.60,1.27 mm) and of -4.40 mu m (95% CI, -131.8,122.9 mu m), respectively. For the estimation of axial length, heat map analysis showed that signals predominantly from overall of the macular region, the foveal region, and the extrafoveal region were used in the eyes with an axial length of < 22 mm, 22-26 mm, and > 26 mm, respectively. For the estimation of SFCT, the convolutional neural network (CNN) used mostly the central part of the macular region, the fovea or perifovea, independently of the SFCT. Our study shows that deep-learning-based algorithms may be helpful in estimating axial length and SFCT based on conventional color fundus images. They may be a further step in the semiautomatic assessment of the eye.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版
大类 | 2 区 生物
小类 | 2 区 发育生物学 3 区 细胞生物学
最新[2025]版:
大类 | 2 区 生物学
小类 | 2 区 发育生物学 3 区 细胞生物学
JCR分区:
出版当年[2019]版:
Q1 DEVELOPMENTAL BIOLOGY Q2 CELL BIOLOGY
最新[2023]版:
Q1 DEVELOPMENTAL BIOLOGY Q2 CELL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Capital Med Univ, Beijing Tongren Hosp,Med Artificial Intelligence, Beijing Tongren Eye Ctr,Beijing Ophthalmol & Visu, Minist Ind & Informat Technol,Beijing Key Lab Int, Beijing, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:25498 今日访问量:0 总访问量:1499 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)