高级检索
当前位置: 首页 > 详情页

Second-order asymmetric convolution network for breast cancer histopathology image classification

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Dalian Minzu Univ, Sch Comp Sci & Engn, Dalian, Peoples R China [2]Dalian Minzu Univ, Inst Machine Intelligence & Biocomp, Dalian, Peoples R China [3]Bank TianJin, Informat Technol Dept, Tianjin, Peoples R China [4]Dalian Univ, Minist Educ, Key Lab Adv Design & Intelligent Comp, Dalian, Peoples R China [5]Beijing Tongren Hosp, Informat Ctr, Beijing, Peoples R China [6]18 Liaohe West Rd, Dalian, Peoples R China
出处:
ISSN:

关键词: asymmetric convolution breast cancer histopathology image classification convolutional neural network covariance pooling second-order statistics

摘要:
Recently, convolutional neural networks (CNNs) have been widely utilized for breast cancer histopathology image classification. Besides, research works have also convinced that deep high-order statistic models obviously outperform corresponding first-order counterparts in vision tasks. Inspired by this, we attempt to explore global deep high-order statistics to distinguish breast cancer histopathology images. To further boost the classification performance, we also integrate asymmetric convolution into the second-order network and propose a novel second-order asymmetric convolution network (SoACNet). SoACNet adopts a series of asymmetric convolution blocks to replace each stand square-kernel convolutional layer of the backbone architecture, followed by a global covariance pooling to compute second-order statistics of deep features, leading to a more robust representation of histopathology images. Extensive experiments on the public BreakHis dataset demonstrate the effectiveness of SoACNet for breast cancer histopathology image classification, which achieves competitive performance with the state-of-the-arts.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 3 区 物理与天体物理
小类 | 3 区 生化研究方法 3 区 生物物理 3 区 光学
最新[2023]版:
大类 | 3 区 物理与天体物理
小类 | 2 区 生物物理 3 区 生化研究方法 3 区 光学
JCR分区:
出版当年[2020]版:
Q2 OPTICS Q2 BIOPHYSICS Q2 BIOCHEMICAL RESEARCH METHODS
最新[2023]版:
Q3 BIOCHEMICAL RESEARCH METHODS Q3 BIOPHYSICS Q3 OPTICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Dalian Minzu Univ, Sch Comp Sci & Engn, Dalian, Peoples R China [2]Dalian Minzu Univ, Inst Machine Intelligence & Biocomp, Dalian, Peoples R China [6]18 Liaohe West Rd, Dalian, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Dalian Minzu Univ, Sch Comp Sci & Engn, Dalian, Peoples R China [2]Dalian Minzu Univ, Inst Machine Intelligence & Biocomp, Dalian, Peoples R China [4]Dalian Univ, Minist Educ, Key Lab Adv Design & Intelligent Comp, Dalian, Peoples R China [6]18 Liaohe West Rd, Dalian, Peoples R China [*1]No. 18, Liaohe West Road, Jinzhou New District, Dalian, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)