高级检索
当前位置: 首页 > 详情页

Hierarchical spiking neural network auditory feature based dry-type transformer fault diagnosis using convolutional neural network

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]China Univ Min & Technol, Sch Mechatron Engn, Xuzhou 221116, Peoples R China [2]State Grid Zhejiang Elect Power Res Inst, Hangzhou 310014, Peoples R China [3]Capital Med Univ, Beijing Tongren Hosp, Dept Otolaryngol Head & Neck Surg, Minist Educ,Key Lab Otolaryngol Head & Neck Surg, Beijing 100005, Peoples R China [4]Beijing Engn Res Ctr Audiol Technol, Beijing 100005, Peoples R China [5]Shanghai Rhythm Elect Technol Co Ltd, Shanghai 201108, Peoples R China
出处:
ISSN:

关键词: dry-type transformers fault diagnosis auditory feature auditory model convolutional neural network

摘要:
Dry-type transformer fault diagnosis (DTTFD) presents a significant challenge because of its complex internal structure and sensitivity to noise. To address this challenge, we propose a DTTFD method that combines hierarchical spike neural network auditory features (HSNNAF) with convolutional neural networks (CNN). By leveraging the hierarchical structure of the central auditory system and sequential nonlinear feature extraction to compute the HSNNAF, we enhanced the relevant clues of transformer faults while removing non-fault source noise. Subsequently, the obtained HSNNAF were fed into a CNN for fault classification. The proposed method demonstrated high accuracy in DTTFD, with a diagnostic accuracy of 99.52%. Even at a signal-to-noise ratio of 0 dB, the diagnostic accuracy remains as high as 95.88%. These results indicate that the method can accurately diagnose faults in dry-type transformers while exhibiting excellent noise resistance capabilities.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 3 区 工程技术
小类 | 3 区 工程:综合 3 区 仪器仪表
最新[2023]版:
大类 | 3 区 工程技术
小类 | 3 区 工程:综合 3 区 仪器仪表
JCR分区:
出版当年[2022]版:
Q3 ENGINEERING, MULTIDISCIPLINARY Q3 INSTRUMENTS & INSTRUMENTATION
最新[2023]版:
Q1 ENGINEERING, MULTIDISCIPLINARY Q2 INSTRUMENTS & INSTRUMENTATION

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]China Univ Min & Technol, Sch Mechatron Engn, Xuzhou 221116, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)