高级检索
当前位置: 首页 > 详情页

A new convolutional neural network model for peripapillary atrophy area segmentation from retinal fundus images

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]Tsinghua Univ, Res Ctr Contemporary Management, Key Res Inst Humanities & Social Sci Univ, Sch Econ & Management, Beijing 100084, Peoples R China [2]Capital Med Univ, Beijing Ophthalmol & Visual Sci Key Lab, Beijing Tongren Eye Ctr, Beijing Tongren Hosp, Beijing 100005, Peoples R China
出处:
ISSN:

关键词: Deep learning Medical image segmentation Peripapillary atrophy segmentation Convolutional neural networks Fully convolutional network

摘要:
Peripapillary atrophy (PPA) is a clinical finding, which reflects the atrophy of retina layer and retinal pigment epithelium. The size of PPA area is a useful medical indicator, as it is highly associated with many diseases such as glaucoma and myopia. Therefore, separating the PPA area from retinal images, which is called PPA area segmentation, is very important. It is a challenging task, because PPA areas are irregular and non-uniform, and their contours are blurry and change gradually. To solve these issues, we transform the PPA area segmentation task into a task of segmenting another two areas with relatively regular and uniform shapes, and then propose a novel multi-task fully convolutional network (MFCN) model to jointly extract them from retinal images. Meanwhile, we take edge continuity of the target area into consideration. To evaluate the performance of the proposed model, we conduct experiments on images with PPA areas labelled by experts and achieve an average precision of 0.8928, outperforming the state-of-the-art models. To demonstrate the application of PPA segmentation in medical research, we apply PPA related features based on the segmented PPA area on differentiating glaucomatous and physiologic large cup cases. Experiment conducted on real datasets confirms the effectiveness of using these features for glaucoma diagnosis. (C) 2019 Elsevier B.V. All rights reserved.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 2 区 工程技术
小类 | 2 区 计算机:人工智能 2 区 计算机:跨学科应用
最新[2023]版:
大类 | 1 区 计算机科学
小类 | 1 区 计算机:跨学科应用 2 区 计算机:人工智能
JCR分区:
出版当年[2018]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
最新[2023]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者机构: [1]Tsinghua Univ, Res Ctr Contemporary Management, Key Res Inst Humanities & Social Sci Univ, Sch Econ & Management, Beijing 100084, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21166 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)