高级检索
当前位置: 首页 > 详情页

A deep learning model integrating domain-specific features for enhanced glaucoma diagnosis

文献详情

资源类型:
Pubmed体系:
机构: [1]Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China [2]School of Management of Hefei, Key Laboratory of Process Optimization and Intelligence Decision Making, University of Technology, Minister of Education, Hefei, China
出处:

关键词: Deep learning Disease diagnosis Glaucoma diagnosis Medical image analysis Physiologic large cups Image segmentation

摘要:
Glaucoma is a group of serious eye diseases that can cause incurable blindness. Despite the critical need for early detection, over 60% of cases remain undiagnosed, especially in less developed regions. Glaucoma diagnosis is a costly task and some models have been proposed to automate diagnosis based on images of the retina, specifically the area known as the optic cup and the associated disc where retinal blood vessels and nerves enter and leave the eye. However, diagnosis is complicated because both normal and glaucoma-affected eyes can vary greatly in appearance. Some normal cases, like glaucoma, exhibit a larger cup-to-disc ratio, one of the main diagnostic criteria, making it challenging to distinguish between them. We propose a deep learning model with domain features (DLMDF) to combine unstructured and structured features to distinguish between glaucoma and physiologic large cups. The structured features were based upon the known cup-to-disc ratios of the four quadrants of the optic discs in normal, physiologic large cups, and glaucomatous optic cups. We segmented each cup and disc using a fully convolutional neural network and then calculated the cup size, disc size, and cup-to-disc ratio of each quadrant. The unstructured features were learned from a deep convolutional neural network. The average precision (AP) for disc segmentation was 98.52%, and for cup segmentation it was also 98.57%. Thus, the relatively high AP values enabled us to calculate the 15 reliable features from each segmented disc and cup. In classification tasks, the DLMDF outperformed other models, achieving superior accuracy, precision, and recall. These results validate the effectiveness of combining deep learning-derived features with domain-specific structured features, underscoring the potential of this approach to advance glaucoma diagnosis.© 2025. The Author(s).

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 3 区 医学
小类 | 3 区 医学:信息
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 医学:信息
第一作者:
第一作者机构: [1]Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:25471 今日访问量:0 总访问量:1498 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)