高级检索
当前位置: 首页 > 详情页

Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]Nankai Univ, Tianjin, Peoples R China [2]Nankai Univ, Tianjin Key Lab Network & Data Sci Technol, Tianjin, Peoples R China [3]Key Lab Med Data Anal & Stat Res Tianjin, Tianjin, Peoples R China [4]Capital Med Univ, Beijing Tongren Hosp, Beijing, Peoples R China [5]Beijing Shanggong Med Technol Co Ltd, Beijing, Peoples R China
出处:
ISSN:

关键词: Diabetic retinopathy Fundus image Deep learning Image classification Semantic segmentation

摘要:
Diabetic retinopathy (DR), the leading cause of blindness for working-age adults, is generally intervened by early screening to reduce vision loss. A series of automated deep-learning-based algorithms for DR screening have been proposed and achieved high sensitivity and specificity ( > 90%). However, these deep learning models do not perform well in clinical applications due to the limitations of the existing publicly available fundus image datasets. In order to evaluate these methods in clinical situations, we collected 13,673 fundus images from 9598 patients. These images were divided into six classes by seven graders according to image quality and DR level. Moreover, 757 images with DR were selected to annotate four types of DR-related lesions. Finally, we evaluated state-of-the-art deep learning algorithms on collected images, including image classification, semantic segmentation and object detection. Although we obtain an accuracy of 0.8284 for DR classification, these algorithms perform poorly on lesion segmentation and detection, indicating that lesion segmentation and detection are quite challenging. In summary, we are providing a new dataset named DDR for assessing deep learning models and further exploring the clinical applications, particularly for lesion recognition. (C) 2019 Elsevier Inc. All rights reserved.

基金:
语种:
高被引:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 2 区 工程技术
小类 | 1 区 计算机:信息系统
最新[2025]版:
大类 | 2 区 计算机科学
小类 | 2 区 计算机:信息系统
JCR分区:
出版当年[2017]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
最新[2023]版:

影响因子: 最新[2023版] 最新五年平均 出版当年[2017版] 出版当年五年平均 出版前一年[2016版] 出版后一年[2018版]

第一作者:
第一作者机构: [1]Nankai Univ, Tianjin, Peoples R China [2]Nankai Univ, Tianjin Key Lab Network & Data Sci Technol, Tianjin, Peoples R China
通讯作者:
通讯机构: [1]Nankai Univ, Tianjin, Peoples R China [5]Beijing Shanggong Med Technol Co Ltd, Beijing, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:25463 今日访问量:0 总访问量:1498 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)