高级检索
当前位置: 首页 > 详情页

Partial prior transfer learning based on self-attention CNN for EEG decoding in stroke patients

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Shanghai Jiao Tong Univ, Tong Ren Hosp, Sch Med, Dept Rehabil Med, Shanghai 200336, Peoples R China [2]Shanghai Jiao Tong Univ, Inst Rehabil, Sch Med, Shanghai 200025, Peoples R China [3]China Japan Friendship Hosp, Beijing 100029, Peoples R China [4]Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai 200444, Peoples R China
出处:
ISSN:

关键词: Motor imagery Transfer learning Self-attention Convolutional neural network EEG decoding

摘要:
The utilization of motor imagery-based brain-computer interfaces (MI-BCI) has been shown to assist stroke patients activate motor regions in the brain. In particular, the brain regions activated by unilateral upper limb multi-task are more extensive, which is more beneficial for rehabilitation, but it also increases the difficulty of decoding. In this paper, self-attention convolutional neural network based partial prior transfer learning (SACNN-PPTL) is proposed to improve the classification performance of patients' MI multi-task. The backbone network of the algorithm is SACNN, which accords with the inherent features of electroencephalogram (EEG) and contains the temporal feature module, the spatial feature module and the feature generalization module. In addition, PPTL is introduced to transfer part of the target domain while preserving the generalization of the base model while improving the specificity of the target domain. In the experiment, five backbone networks and three training modes are selected as comparison algorithms. The experimental results show that SACNN-PPTL had a classification accuracy of 55.4%+/- 0.17 in four types of MI tasks for 22 patients, which is significantly higher than comparison algorithms (P < 0.05). SACNN-PPTL effectively improves the decoding performance of MI tasks and promotes the development of BCI-based rehabilitation for unilateral upper limb.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 综合性期刊
小类 | 2 区 综合性期刊
最新[2023]版:
大类 | 2 区 综合性期刊
小类 | 2 区 综合性期刊
JCR分区:
出版当年[2022]版:
Q2 MULTIDISCIPLINARY SCIENCES
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Shanghai Jiao Tong Univ, Tong Ren Hosp, Sch Med, Dept Rehabil Med, Shanghai 200336, Peoples R China
通讯作者:
通讯机构: [1]Shanghai Jiao Tong Univ, Tong Ren Hosp, Sch Med, Dept Rehabil Med, Shanghai 200336, Peoples R China [2]Shanghai Jiao Tong Univ, Inst Rehabil, Sch Med, Shanghai 200025, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21434 今日访问量:0 总访问量:1221 更新日期:2025-02-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)