高级检索
当前位置: 首页 > 详情页

FBSA-CNN: A convolutional neural network framework for EEG-based detection of non-acute methamphetamine use disorders

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Shanghai Univ, Sch Med, Sch Mechatron Engn & Automat, Shanghai, Peoples R China [2]Shanghai Shaonao Technol Co Ltd, Shanghai, Peoples R China [3]Shanghai Jiao Tong Univ, Tong Ren Hosp, Sch Med, Shanghai, Peoples R China
出处:
ISSN:

关键词: Convolutional neural network Detection Electroencephalography Methamphetamine use disorder Self-attention

摘要:
Non-acute methamphetamine use disorder (MUD) has a high risk of relapse but is often difficult to detect because the patient's cravings enter a latent state. Traditional methods such as clinical scales or hair/urine tests have detection limitations of being too subjective or having short retrospective periods. Deep learning based on electroencephalogram (EEG) allows for capturing abnormal brain discharges objectively, so this study proposes a filter-bank self-attention convolutional neural network (FBSA-CNN) for detecting patients with non-acute MUD. First, a natural frequency filtering module is designed in FBSA-CNN to realize the splitting of different frequency domains. Then, a spatial-temporal domain convolution module is designed to extract the spatio-temporal information of each frequency band. Finally, a self-attention (SA) mechanism is used to learn the global frequency domain dependence in EEG features, supplement the limited sensory field in the convolution module, and adaptively assign the weights of different frequency bands. The proposed algorithm makes up for the traditional framework that ignores the important information in different frequency domains. FBSA-CNN is tested on a 68subject resting-state EEG dataset with an accuracy of 85.92% (10-fold cross validation), which outperforms the other six classical algorithms. Furthermore, both feature visualization and ablation experiments demonstrate the good performance of FBSA-CNN.This method lays the foundation for the effective detection of non-acute MUD thus reducing the risk of recurrence.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 2 区 医学
小类 | 3 区 工程:生物医学
JCR分区:
出版当年[2023]版:
Q1 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q1 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Shanghai Univ, Sch Med, Sch Mechatron Engn & Automat, Shanghai, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)