高级检索
当前位置: 首页 > 详情页

Preliminary study on AI-assisted diagnosis of bone remodeling in chronic maxillary sinusitis

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Southeast Univ, Nanjing Tongren Hosp, Sch Med, Dept Radiol, 2007 Ji Yin Ave, Nanjing 211102, Peoples R China [2]Nanjing Med Univ, Nanjing Hosp 1, Dept Radiol, Nanjing, Peoples R China [3]Southeast Univ, Nanjing Tongren Hosp, Sch Med, Dept Otolaryngol Head & Neck Surg, Nanjing, Peoples R China [4]Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai, Peoples R China
出处:
ISSN:

关键词: Bone remodeling Chronic maxillary sinusitis Computed tomography imaging Artificial intelligence (AI) Deep learning Machine learning

摘要:
Objective To construct the deep learning convolution neural network (CNN) model and machine learning support vector machine (SVM) model of bone remodeling of chronic maxillary sinusitis (CMS) based on CT image data to improve the accuracy of image diagnosis.Methods Maxillary sinus CT data of 1000 samples in 500 patients from January 2018 to December 2021 in our hospital was collected. The first part is the establishment and testing of chronic maxillary sinusitis detection model by 461 images. The second part is the establishment and testing of the detection model of chronic maxillary sinusitis with bone remodeling by 802 images. The sensitivity, specificity and accuracy and area under the curve (AUC) value of the test set were recorded, respectively.Results Preliminary application results of CT based AI in the diagnosis of chronic maxillary sinusitis and bone remodeling. The sensitivity, specificity and accuracy of the test set of 93 samples of CMS, were 0.9796, 0.8636 and 0.9247, respectively. Simultaneously, the value of AUC was 0.94. And the sensitivity, specificity and accuracy of the test set of 161 samples of CMS with bone remodeling were 0.7353, 0.9685 and 0.9193, respectively. Simultaneously, the value of AUC was 0.89.Conclusion It is feasible to use artificial intelligence research methods such as deep learning and machine learning to automatically identify CMS and bone remodeling in MSCT images of paranasal sinuses, which is helpful to standardize imaging diagnosis and meet the needs of clinical application.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 3 区 医学
小类 | 3 区 核医学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 核医学
JCR分区:
出版当年[2022]版:
Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Southeast Univ, Nanjing Tongren Hosp, Sch Med, Dept Radiol, 2007 Ji Yin Ave, Nanjing 211102, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:23449 今日访问量:6 总访问量:1282 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)