高级检索
当前位置: 首页 > 详情页

Development and validation of a prediction model for malignant sinonasal tumors based on MR radiomics and machine learning

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Capital Med Univ, Beijing Tongren Hosp, Dept Radiol, Beijing, Peoples R China [2]Second Hosp Jilin Univ, Dept Radiol, Changchun, Peoples R China [3]Zhengzhou Univ, Dept MRI, Affiliated Hosp 1, Zhengzhou, Peoples R China [4]Siemens Healthcare, MR Res Collaborat Team, Beijing, Peoples R China [5]Capital Med Univ, Beijing Tongren Hosp, Dept Otolaryngol Head & Neck Surg, Beijing, Peoples R China [6]Beijing Inst Otorhinolaryngol, Beijing Lab Allerg Dis, Beijing, Peoples R China [7]Beijing Inst Otorhinolaryngol, Beijing Key Lab Nasal Dis, Beijing, Peoples R China [8]Chinese Acad Med Sci, Res Unit Diag & Treatment Chron Nasal Dis, Beijing, Peoples R China [9]Capital Med Univ, Beijing Tongren Hosp, Dept Allergy, Beijing, Peoples R China
出处:
ISSN:

关键词: Paranasal sinuses Neoplasms Magnetic resonance imaging Radiomics Machine learning

摘要:
ObjectivesThis study aimed to utilize MR radiomics-based machine learning classifiers on a large-sample, multicenter dataset to develop an optimal model for predicting malignant sinonasal tumors and tumor-like lesions. MethodsThis study included 1711 adult patients (875 benign and 836 malignant) with sinonasal tumors or tumor-like lesions from three institutions. Patients from institution 1 (n = 1367) constituted both the training and validation cohorts, while those from institution 2 and 3 (n = 158/186) made up the test cohorts. Manual segmentation of the region of interest of the tumor was performed on T1WI, T2WI, and contrast-enhanced T1WI (CE-T1WI). Data normalization, dimensional reductions, feature selection, and classifications were performed using ten machine-learning classifiers. Four fusion models, namely T1WI + T2WI, T1WI + CE-T1WI, T2WI + CE-T1WI, and T1WI + T2WI + CE-T1WI, were constructed using the top ten features with the highest contribution in feature selection in the optimal models of T1WI, T2WI, and CE-T1WI. The Delong test compared areas under the curve (AUC) between models. ResultsThe AUCs of training/validation/test1/test2 datasets for T1WI, T2WI, and CE-T1WI were 0.900/0.842/0.872/0.839, 0.876/0.789/0.842/0.863, and 0.899/0.824/0.831/0.707, respectively. The fusion model from T1WI + T2WI + CE-T1WI had the highest AUC. The AUCs of training/validation/test1/test2 datasets were 0.947/0.849/0.871/0.887. The T1WI + T2WI + CE-T1WI model demonstrated a significantly higher AUC than the T2WI + CE-T1WI model in both cohorts (p < 0.05) and outperformed the T2WI model in test 1 (p = 0.008) and the T1WI model in test 2 (p = 0.006). ConclusionsThis fusion model based on radiomics from T1WI + T2WI + CE-T1WI images and machine learning can improve the power in predicting malignant sinonasal tumors with high accuracy, resilience, and robustness. Clinical relevance statementOur study proposes a radiomics-based machine learning fusion model from T1- and T2-weighted images and contrast-enhanced T1-weighted images, which can non-invasively identify the nature of sinonasal tumors and improve the performance in predicting malignant sinonasal tumors. Key Points. ..

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 医学
小类 | 2 区 核医学
最新[2023]版:
大类 | 2 区 医学
小类 | 2 区 核医学
JCR分区:
出版当年[2022]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Capital Med Univ, Beijing Tongren Hosp, Dept Radiol, Beijing, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [5]Capital Med Univ, Beijing Tongren Hosp, Dept Otolaryngol Head & Neck Surg, Beijing, Peoples R China [6]Beijing Inst Otorhinolaryngol, Beijing Lab Allerg Dis, Beijing, Peoples R China [7]Beijing Inst Otorhinolaryngol, Beijing Key Lab Nasal Dis, Beijing, Peoples R China [8]Chinese Acad Med Sci, Res Unit Diag & Treatment Chron Nasal Dis, Beijing, Peoples R China [9]Capital Med Univ, Beijing Tongren Hosp, Dept Allergy, Beijing, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)