高级检索
当前位置: 首页 > 详情页

Value of MR-based radiomics in differentiating uveal melanoma from other intraocular masses in adults

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Capital Med Univ, Beijing Tongren Hosp, Dept Radiol, 1 Dongjiaominxiang St, Beijing 100730, Peoples R China [2]Capital Med Univ, Clin Ctr Eye Tumors, Beijing 100730, Peoples R China [3]Capital Med Univ, Beijing Tongren Hosp, Beijing Tongren Eye Ctr, 1 Dongjiaominxiang Stree, Beijing 100730, Peoples R China [4]Beijing Key Lab Intraocular Tumor Diag & Treatmen, Beijing 100730, Peoples R China [5]Huiying Med Technol Co Ltd, Beijing 100192, Peoples R China
出处:
ISSN:

关键词: Uveal melanoma Magnetic resonance imaging (MRI) Machine learning Radiomics Differential diagnosis

摘要:
Purpose: To assess the performance of machine learning (ML)-based magnetic resonance imaging (MRI) radiomics analysis for discriminating between uveal melanoma (UM) and other intraocular masses. Methods: This retrospective study analyzed 245 patients with intraocular masses (165 UMs and 80 other intraocular masses). Radiomics features were extracted from T1WI, T2WI, and contrast enhanced T1-weighted images (CET1WI), respectively. The intraclass correlation coefficient (ICC) was calculated to quantify the reproducibility of features. The training and test sets consisted of 195 and 50 cases. Least absolute shrinkage and selection operator (LASSO) regression method was employed for feature selection. The ML classifiers were logistic regression (LR), multilayer perceptron (MLP), and support vector machine (SVM). The performance of classifiers was evaluated by ROC analysis, and was compared to the performance of visual assessment by DeLong test. Results: The optimal radiomics feature set was 10, 15, 15, and 24 for T1W, T2W, CET1W, and joint T2W and CET1W images, respectively. The accuracy of T1WI, T2WI, CET1WI, and the joint T2WI and CET1WI models ranged from 72.0 %-78.0 %, from 79.6 %-81.6 %, from 74.0 %-82.0 %, and from 76.0 %-86.0 % in the test set. In the test set, the AUC for T1WI, T2WI, CET1WI, joint T2WI, and CET1WI models ranged from 0.775 to 0.829, 0.816 to 0.826, 0.836 to 0.861, and 0.870 to 0.877, respectively. In the combined model, the performance of ML classifiers was better than the performance of visual assessment in the training set and in all patients (p<0.05). Conclusions: Radiomics analysis represents a promising tool in separating UM from other intraocular masses.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 3 区 医学
小类 | 3 区 核医学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 核医学
JCR分区:
出版当年[2018]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者机构: [1]Capital Med Univ, Beijing Tongren Hosp, Dept Radiol, 1 Dongjiaominxiang St, Beijing 100730, Peoples R China [2]Capital Med Univ, Clin Ctr Eye Tumors, Beijing 100730, Peoples R China
通讯作者:
通讯机构: [1]Capital Med Univ, Beijing Tongren Hosp, Dept Radiol, 1 Dongjiaominxiang St, Beijing 100730, Peoples R China [2]Capital Med Univ, Clin Ctr Eye Tumors, Beijing 100730, Peoples R China [3]Capital Med Univ, Beijing Tongren Hosp, Beijing Tongren Eye Ctr, 1 Dongjiaominxiang Stree, Beijing 100730, Peoples R China [4]Beijing Key Lab Intraocular Tumor Diag & Treatmen, Beijing 100730, Peoples R China [*1]Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China [*2]Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:23425 今日访问量:5 总访问量:1281 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)