高级检索
当前位置: 首页 > 详情页

Revealing the Mechanism of Esculin in Treating Renal Cell Carcinoma Based on Network Pharmacology and Experimental Validation

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Shanghai Jiao Tong Univ, Tongren Hosp, Sch Med, Dept Urol, Shanghai 200336, Peoples R China [2]Shanghai Jiao Tong Univ, Tongren Hosp, Sch Med, Dept Tradit Chinese Med, Shanghai 200336, Peoples R China [3]Yanbian Univ, Coll Med, Yanji 133002, Peoples R China [4]Shanghai Jiao Tong Univ, Tongren Hosp, Sch Med, Dept Anesthesiol & Surg, Shanghai 200336, Peoples R China [5]Shanghai Jiao Tong Univ, Tongren Hosp, Hongqiao Int Inst Med, Sch Med, Shanghai 200336, Peoples R China
出处:
ISSN:

关键词: renal cell carcinoma esculin natural products network pharmacology PI3K/Akt pathway

摘要:
Purpose: This study aims to explore the potential mechanisms of esculin in the treatment of renal cell carcinoma (RCC). Methods: We employed network pharmacology to predict the potential mechanisms and targets of esculin in RCC. Molecular docking techniques were then employed to validate the predicted targets. Additionally, a series of in vitro experiments were conducted to verify the anticancer effects of esculin on RCC cells, including the CCK-8 assay, EdU assay, wound healing assay, apoptosis assay, and Western blot. Results: Network pharmacology and molecular docking results identified GAPDH, TNF, GSK3B, CCND1, MCL1, IL2, and CDK2 as core targets. GO and KEGG analyses suggested that esculin may influence apoptotic processes and target the PI3K/Akt pathway in RCC. Furthermore, the CCK-8 assay demonstrated that esculin inhibited RCC cell viability. Microscopic observations revealed that following esculin treatment, there was an increase in cell crumpling, a reduction in cell density, and an accumulation of floating dead cells. Additionally, with increasing esculin concentrations, the proportion of EdU-positive cells decreased, the wound closure ratio decreased, the proportion of PI-positive cells increased, the expression levels of BAX and cleaved-caspase-3 proteins increased, and the expression level of Bcl2 protein decreased. These findings suggested that esculin inhibits the proliferation and migration of RCC cells while promoting apoptosis. Moreover, esculin was found to target GAPDH and inhibit the PI3K/Akt pathway. Conclusions: This study is the first to elucidate the therapeutic effects of esculin on RCC cells. The results provide evidence supporting the clinical application of esculin and introduce a promising new candidate for RCC treatment.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 生物学
小类 | 3 区 生化与分子生物学
最新[2023]版:
大类 | 2 区 生物学
小类 | 3 区 生化与分子生物学
JCR分区:
出版当年[2022]版:
Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
最新[2023]版:
Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Shanghai Jiao Tong Univ, Tongren Hosp, Sch Med, Dept Urol, Shanghai 200336, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21169 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)