高级检索
当前位置: 首页 > 详情页

Inhibitory effects of flavonoids on organic cation transporter 1: Implications for food/herb-drug interactions and hepatoprotective effects

文献详情

资源类型:
Pubmed体系:
机构: [1]State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China [2]Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
出处:
ISSN:

关键词: Organic cation transporter 1 Flavonoids Food/herb-drug interactions Inhibition Structure-activity relationships Drug-induced liver injury

摘要:
Organic cation transporter 1 (OCT1, gene symbol: SLC22A1) is mainly responsible for the hepatic uptake of various cationic drugs, closely associated with drug-induced liver injury (DILI). Screening and identifying potent OCT1 inhibitors with little toxicity in natural products is of great value in alleviating OCT1-mediated liver injury. Flavonoids, a group of polyphenols commonly found in foodstuffs and herbal products, have been reported to cause transporter-mediated food/herb-drug interactions (FDIs). Our objective was to investigate potential inhibitors of OCT1 from 96 flavonoids, evaluate the hepatoprotective effects on retrorsine-induced liver injury, and clarify the structure-activity relationships of flavonoids with OCT1. Thirteen flavonoids exhibited significant inhibition (>50%) on OCT1 in OCT1-HEK293 cells. Among them, the five strongest flavonoid inhibitors (IC50 < 10 μM), including α-naphthoflavone, apigenin, 6-hydroxyflavone, luteolin, and isosilybin markedly decreased oxaliplatin-induced cytotoxicity. In retrorsine-induced liver injury models, they also reduced alanine aminotransferase (ALT) and aspartate aminotransferase (AST) to different levels, the best of which was 6-hydroxyflavone. The pharmacophore model clarified that hydrogen bond acceptors at the 4,8,5' position might play a vital role in the inhibitory effect of flavonoids on OCT1. Taken together, our findings would pave the way to predicting the potential risks of flavonoid-related FDIs in humans and optimizing flavonoid structure to alleviate OCT1-mediated liver injury.Copyright © 2024 Elsevier Ltd. All rights reserved.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 3 区 医学
小类 | 3 区 食品科技 3 区 毒理学
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 食品科技 3 区 毒理学
第一作者:
第一作者机构: [1]State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
通讯作者:
通讯机构: [1]State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China [2]Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China [*1]No. 37 Yong Wang Road, Daxing District, Beijing, China [*2]No.1 Dongjiaominxiang, Dongcheng District, Beijing, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:21205 今日访问量:0 总访问量:1219 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)