高级检索
当前位置: 首页 > 详情页

Oestrogen suppresses the adipogenesis of fibro/adipogenic progenitors through reactivating the METTL3-ESR1-mediated loop in post-menopausal females

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Shanghai Jiao Tong Univ, Xinhua Hosp, Sch Med, Shanghai, Peoples R China [2]Shanghai Univ Sport, Sch Exercise & Hlth, Shanghai, Peoples R China [3]Wuhan Univ, Wuhan Hosp 3, Tongren Hosp, Wuhan, Peoples R China [4]Fudan Univ, Huashan Hosp, Dept Hand Surg, Shanghai, Peoples R China [5]Peking Univ Third Hosp, Beijing, Peoples R China
出处:
ISSN:

关键词: adipogenesis ESR1 fibro/adipogenic progenitors (FAPs) m6A methylation METTL3 muscular fatty infiltration

摘要:
BackgroundPost-menopausal women experience more severe muscular fatty infiltration, though the mechanisms remain unclear. The decline in estrogen levels is considered as a critical physiological alteration during post-menopause. Fibro/adipogenic progenitors (FAPs) are identified as major contributors to muscular fatty infiltration. This study aimed to investigate the detailed mechanism underlying the excessive muscular fatty infiltration in postmenopausal females.MethodsSupraspinatus muscle samples were collected from female patients with or without menopause, and from mice with or without ovariectomy (OVX), to evaluate muscular fatty infiltration and isolated FAPs. The expressions of (estrogen receptor 1) ESR1, methyltransferase-like 3 (METTL3), and adipogenesis ability in FAPs from post-menopausal women and OVX mice were investigated. RNA sequencing (RNA-Seq) was performed to explore the gene expression profiles and potential mechanisms in FAPs from Pdgfr alpha-CreERT2; Esr1 knockout (Esr1 KO) mice and Esr1 flox/flox (Esr1 f/f) mice. The interplay of the METTL3-ESR1 mediated loop and its role in regulating adipogenesis in FAPs were investigated using dual luciferase reporter assays, chromatin immunoprecipitation (ChIP), and protein and RNA stability assays. The effects of estrogen supplementation on muscular fatty infiltration and locomotor function in OVX mice were evaluated by immunofluorescent staining and functional analysis.ResultsDecreased expression of ESR1/METTL3 and increased adipogenesis ability in FAPs was found in post-menopausal female. METTL3-mediated m6A methylation promoted ESR1 mRNA stability at the post-transcriptional level in FAPs. METTL3-mediated m6A modification promoted ESR1 expression by stabilizing ESR1 mRNA, while ESR1 acted as a transcription factor that enhanced METTL3 transcription in turn. ESR1 also suppressed the transcription of the adipogenic transcription factor peroxisome proliferator-activated receptor gamma (PPAR gamma), thereby inhibiting adipogenesis in FAPs. Reactivation of the METTL3-ESR1 mediated loop by estrogen alleviated excessive adipogenesis in FAPs from post-menopausal women, and it also reduced muscular fatty infiltration, and improved locomotor function in OVX mice.ConclusionExcessive muscular fatty infiltration in post-menopausal women arose from the disruption of the METTL3-ESR1 mediated loop of FAPs due to estrogen deficiency. Reactivation of the METTL3-ESR1 mediated loop by estrogen may serve as a novel intervention to inhibit excessive adipogenesis of post-menopausal female FAPs, thereby ameliorating muscular fatty infiltration and improving locomotor function in post-menopausal females.Key points Oestrogen insufficiency disrupted the METTL3ESR1 loop in post-menopausal FAPs, causing excessive muscular fatty infiltration. METTL3-mediated m6A modification stabilized ESR1 mRNA and enhanced ESR1 expression, while increased ESR1 further promoted METTL3 transcription. ESR1 inhibited the transcription of adipogenic factor PPAR gamma, ameliorating adipogenesis in FAPs. Reactivating the METTL3ESR1 loop via oestrogen in FAPs reduced muscular fatty infiltration and improved locomotor function.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 2 区 医学
小类 | 2 区 医学:研究与实验 2 区 肿瘤学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 医学:研究与实验 2 区 肿瘤学
JCR分区:
出版当年[2023]版:
Q1 MEDICINE, RESEARCH & EXPERIMENTAL Q1 ONCOLOGY
最新[2023]版:
Q1 MEDICINE, RESEARCH & EXPERIMENTAL Q1 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Shanghai Jiao Tong Univ, Xinhua Hosp, Sch Med, Shanghai, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:23453 今日访问量:6 总访问量:1282 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)