高级检索
当前位置: 首页 > 详情页

An Oxidative Stress Nanoamplifier to Enhance the Efficacy of Cisplatin in Head and Neck Cancer

文献详情

资源类型:
Pubmed体系:

收录情况: ◇ 自然指数

机构: [1]Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P. R. China [2]New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China. [3]Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100021, P. R. China
出处:
ISSN:

关键词: stimuli-responsive oxidative stress nanoamplifier head and neck cancer cisplatin

摘要:
Cisplatin (CP) is a first-line platinum-based drug used for the treatment of head and neck cancer. However, tumor cells can diminish the therapeutic effects of CP through the detoxification system mediated by glutathione (GSH) and the nucleotide excision repair (NER) pathway. Herein, we present a light-activable and pH-responsive oxidative stress nanoamplifier (FPLC@IR OSNA), comprising an amphiphilic compound (FPLC) with Fmoc-lysine acting as a connector between a nitroimidazole derivative and a pH-responsive cinnamaldehyde (CA) derivative, loaded with photosensitizer IR780. The acidic microenvironment of lysosome can trigger the release of CA to produce H2O2, which breaks down into oxygen, further improving the phototherapy efficacy mediated by IR780 irradiation. The consumption of oxygen during the phototherapy process induces hypoxia, prompting the reduction of nitroimidazole to aminoimidazole and leading to reduced GSH synthesis, enhancing tumor cell death induced by CP. Meanwhile, the accumulation of intracellular reactive oxygen species (ROS) during phototherapy attenuates the nuclear NER pathway, further augmenting the therapy effect of CP. This strategy, by combining FPLC@IR OSNA with laser and CP, significantly promotes the therapeutic effect in vitro,  and notably inhibits tumor growth in both Cal27 cell line-derived xenograft models and patient-derived xenograft models.© 2025 Wiley‐VCH GmbH.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 1 区 化学
小类 | 1 区 化学:综合
最新[2025]版:
大类 | 1 区 化学
小类 | 1 区 化学:综合
第一作者:
第一作者机构: [1]Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P. R. China [2]New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China.
共同第一作者:
通讯作者:
通讯机构: [2]New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China. [3]Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100021, P. R. China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:23405 今日访问量:0 总访问量:1276 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)