高级检索
当前位置: 首页 > 详情页

LymoNet: An Advanced Neck Lymph Node Detection Network for Ultrasound Images

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Beihang Univ, Sch Mech Engn & Automat, Beijing 100191, Peoples R China [2]Capital Med Univ, Beijing Tongren Hosp, Dept Diagnost Ultrasound, Beijing 100730, Peoples R China [3]Inst High Energy Phys, Comp Ctr, CAS, Beijing 100039, Peoples R China [4]NYU, Dept Comp Sci, New York, NY 10012 USA [5]Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Beijing 100191, Peoples R China
出处:
ISSN:

关键词: Ultrasound images lymph node deep learning transformer neural network

摘要:
Neck lymph node detection is crucial for early cancer metastasis detection and treatment, influencing treatment success and patient survival rates. It also aids in disease staging, monitoring, and treatment selection. It requires the expertise of professional senior radiologists, as the accuracy of current automated detection methods is not sufficiently high. In this study, the neck lymph node detection network (LymoNet) based on YOLOv8 is proposed to detect and classify normal, inflammatory, and metastatic neck lymph nodes from ultrasound images. The advanced attention mechanism modules are utilized to enhance performance of the model, including the Coordinate Attention (CA) which helps the network focus on learning key features in the images, and the Multi-Head Self-Attention (MHSA) which captures global information at different scales. Meanwhile, the medical knowledge embedding which introduces prior knowledge from the medical domain is used to improve the classification performance. By integrating these elements, the YOLOv8 network can achieve better performance in neck lymph node detection tasks. Finally, LymoNet surpassed the benchmark model YOLOv8 by 6.6% in the mAP@.5, achieving the state-of-the-art (SOTA). This model provides a promising solution for automated neck lymph node detection in clinical environments. The proposed methods can also serve as a reference for applying deep learning algorithms in other fields. The source codes, trained weights, and validation data are available on GitHub.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 2 区 医学
小类 | 1 区 计算机:信息系统 1 区 数学与计算生物学 1 区 医学:信息 2 区 计算机:跨学科应用
最新[2025]版:
大类 | 2 区 医学
小类 | 1 区 计算机:信息系统 1 区 数学与计算生物学 1 区 医学:信息 2 区 计算机:跨学科应用
JCR分区:
出版当年[2023]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 MEDICAL INFORMATICS
最新[2023]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 MEDICAL INFORMATICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Beihang Univ, Sch Mech Engn & Automat, Beijing 100191, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Beihang Univ, Sch Mech Engn & Automat, Beijing 100191, Peoples R China [5]Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Beijing 100191, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:23453 今日访问量:6 总访问量:1282 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)