高级检索
当前位置: 首页 > 详情页

Metabolomic profiling and biomarker identification for early detection and therapeutic targeting of doxorubicin-induced cardiotoxicity

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China. [2]Department of General Practice, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
出处:
ISSN:

关键词: cardiotoxicity anticancer metabolomics biomarker doxorubicin

摘要:
Doxorubicin (DOX) is a widely used chemotherapeutic agent known for its efficacy against various cancers, but its clinical application is often limited by its cardiotoxic effects. The exact mechanisms of DOX-induced cardiotoxicity remain unclear, requiring further investigation. Early diagnosis is essential to enhance the quality of life and prognosis for patients with malignancies. This study aims to identify biomarkers and therapeutic targets for DOX cardiotoxicity.Heart tissue samples from 20 DOX-treated cardiotoxic mice and 19 normal controls were analyzed using liquid chromatography-mass spectrometry (LC-MS). Multivariate statistical analysis identified differential metabolites. Key metabolites were assessed using a random forest algorithm, and ROC curves evaluated diagnostic value. H9C2 rat cardiomyoblast cells were cultured to investigate the protective effects of these metabolites.Among 291 metabolites, significant differences emerged between cardiotoxic and normal mice. Five metabolites-4-hydroxy-valeric acid, 2-methylbutanoic acid, traumatic acid, PI (18:2 (9Z, 12Z)/0:0), and MIPC (t18:0/24:0 (2OH))-showed diagnostic potential. ROC analysis indicated excellent value for 4-hydroxy-valeric acid and PI (18:2 (9Z, 12Z)/0:0) and high discriminatory power for 2-methylbutanoic acid (AUC = 0. 99). Pathway analysis highlighted glycosylphosphatidylinositol-anchor biosynthesis, unsaturated fatty acids biosynthesis, pantothenate and CoA pathways, among others, associated with DOX-induced cardiotoxicity. In addition, we found that the differential metabolite Cer (d18:0/12:0) can improve DOX-induced myocardial cell damage and inhibit apoptosis-related protein expression at the cellular level.Heart tissue metabolomics with LC-MS identified critical metabolites and pathways associated with DOX cardiotoxicity, suggesting biomarkers for early diagnosis and potential therapeutic targets to mitigate DOX-related cardiotoxicity and improve clinical outcomes.Copyright © 2025 Ding, Feng, Xu and Xu.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 2 区 生物学
小类 | 2 区 发育生物学 3 区 细胞生物学
最新[2025]版:
大类 | 2 区 生物学
小类 | 2 区 发育生物学 3 区 细胞生物学
JCR分区:
出版当年[2023]版:
Q1 DEVELOPMENTAL BIOLOGY Q2 CELL BIOLOGY
最新[2023]版:
Q1 DEVELOPMENTAL BIOLOGY Q2 CELL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China. [2]Department of General Practice, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:25477 今日访问量:0 总访问量:1499 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)