高级检索
当前位置: 首页 > 详情页

Identifying and Predicting Voluntary Peeling Force in Continuous Curvilinear Capsulorhexis Considering Species Differences

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Nanjing Univ Posts & Telecommun, Coll Automat, Nanjing 210023, Peoples R China [2]Nanjing Univ Posts & Telecommun, Coll Artificial Intelligence, Nanjing 210023, Peoples R China [3]Beihang Univ, Sch Mech Engn & Automat, Beijing 100191, Peoples R China [4]Capital Med Univ, Beijing Tongren Hosp, Beijing Inst Ophthalmol, Beijing Tongren Eye Ctr,Beijing Ophthalmol & Visua, Beijing 100730, Peoples R China [5]Beijing Xianwei Med Technol Co Ltd, Beijing 100083, Peoples R China [6]Shanxi Med Univ, Dept Ophthalmol, Shanxi Eye Hosp, Taiyuan 030002, Shanxi, Peoples R China [7]Sun Yat Sen Univ, Zhongshan Ophthalm Ctr, State Key Lab Ophthalmol, Guangdong Prov Key Lab Ophthalmol & Visual Sci, Guangzhou 510060, Peoples R China [8]Beijing Informat Sci & Technol Univ, Sch Automat, Beijing 100192, Peoples R China
出处:
ISSN:

关键词: Force Long short term memory Transformers Lenses Force measurement Rabbits Ophthalmology Surgery Root mean square Logic gates Continuous curvilinear capsulorhexis (CCC) long short-term memory (LSTM) Transformer encoder voluntary peeling force wavelet decomposition

摘要:
A handheld manipulator offers a feasible way to relieve the challenge of continuous curvilinear capsulorhexis (CCC) by controlling peeling force actively. The precise identification and prediction of voluntary peeling force (0-2 Hz) form the basis of force controller design. However, achieving this goal is limited by species differences (experimental validation: animal model and clinical surgery: in vivo human). This article proposes a framework to relieve this problem. The proposed framework consists of a wavelet-based process module and a prediction module based on long short-term memory (LSTM) and the Transformer's encoder. Peeling forces measured from ex-vivo pig eyes (no treatment, treated with 0.1% and 0.5% sodium hypochlorite), in vivo rabbit eyes, and ex-vivo human lenses are utilized to validate the proposed framework. Experimental results show that the root-mean-square (rms) error of identification is 0.37 mN. The rms error of prediction is 0.41 mN (steady) and 0.87 mN (sharp, prediction time: 50 ms), respectively. The rms prediction error of ex-vivo human samples is 0.36 mN (steady) and 1.05 mN (sharp), even though all training data come from animal models.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 2 区 工程技术
小类 | 2 区 工程:电子与电气 2 区 仪器仪表
最新[2025]版:
大类 | 2 区 工程技术
小类 | 2 区 工程:电子与电气 2 区 仪器仪表
JCR分区:
出版当年[2023]版:
Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 INSTRUMENTS & INSTRUMENTATION
最新[2023]版:
Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 INSTRUMENTS & INSTRUMENTATION

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Nanjing Univ Posts & Telecommun, Coll Automat, Nanjing 210023, Peoples R China [2]Nanjing Univ Posts & Telecommun, Coll Artificial Intelligence, Nanjing 210023, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:25471 今日访问量:0 总访问量:1498 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学附属北京同仁医院 技术支持:重庆聚合科技有限公司 地址:北京市东城区东交民巷1号(100730)