Sigmoid sinus cortical plate dehiscence (SSCPD) is common in pulsatile tinnitus (PT) patients, and is treated through SSCPD resurfacing surgery in clinic, but the bio-mechanism is not clear as so far. This study aimed to clarify the bio-mechanism of PT sensation induced by SSCPD, and quantify the relationship of cortical plate (CP) thickness and PT sensation intensity. It was hypothesized that SSCPD would induce PT through significantly amplifying sigmoid sinus (SS) venous sound in this study. Finite element (FE) analysis based on radiology data of typical patient was used to verify this hypothesis, and was validated with clinical reports. In cases with different CP thickness, FE simulations of SS venous sound generation and propagation procedure were performed, involving SS venous flow field, vibration response of tissue overlying dehiscence area (including SS vessel wall and CP) and sound propagation in temporal bone air cells. It was shown in results that SS venous sound at tympanic membrane was 56.9 dB in SSCPD case and -45.2 dB in intact CP case, and was inaudible in all thin CP cases. It was concluded that SSCPD would directly induce PT through significantly amplifying SS venous sound, and thin CP would not be the only pathophysiology of PT. This conclusion would provide a theoretical basis for the design of SSCPD resurfacing surgery for PT patients with SSCPD or thin CP. (C) 2017 Elsevier Ltd. All rights reserved.
基金:
grants (11572029, 11421202, 81371545 and 81171311) from National Natural Science Founda- tion of China, grant (2016YFC1102202) from National key research and development program in China, grant (Z161100004916041) from Beijing Nova Program Interdisciplinary Studies Cooperative Projects, and grant (2015-3-016) from Beijing Health System High- level Health Technical Personnel Training Program.